The Aluminum Die Casting Process and The Growth of Die Casting Industry

The casting process implements a steel mold often capable of producing tens of thousands of castings in rapid succession. The die must be made in at least two sections to permit removal of castings. The casting cycle begins with the two die halves are clamped tightly together by the die casting press. Molten aluminum is injected into the die cavity where it solidifies quickly. These sections are mounted securely in a machine and are arranged so that one is stationary while the other is moveable. The die halves are drawn apart and the casting is ejected.

 

Die casting dies can be simple or complex, having moveable slides, cores, or other sections depending on the complexity of the casting. Most machines use mechanisms actuated by hydraulic cylinders to achieve locking. Others use direct acting hydraulic pressure. Die casting machines, large or small, very fundamentally only in the method used to inject molten metal into the die.

 

What Are The Advantages Of Aluminum Die Casting?

There are many reasons aluminum is the most commonly cast non-ferrous metal in the world. As a lightweight metal, the most popular reason for utilizing aluminum die casting is that it creates very lightweight parts without sacrificing strength. Aluminum die casting parts also have more surface finishing options and can withstand higher operating temperatures than other non-ferrous materials.

 

Aluminum die cast parts are corrosion resistant, highly conductive, have a good stiffness and strength-to-weight ratio. The aluminum die casting process is based on rapid production that allows a high volume of die casting parts to be produced very quickly and more cost-effectively than alternative casting processes. Aluminum die casting has become the favored option for buyers worldwide. Characteristics and Advantages of Aluminum Die Castings include:

 

  • Lightweight and Durable
  • Good Strength-to-Weight Ratio
  • Great Resistance to Corrosion
  • Excellent Electrical Conductivity
  • Fully Recyclable and Reusable in Production

 

Aluminum Die Casting Product Segmentation

The popularity of aluminum has expanded to many applications around the world today, driving competitive market shares primarily for its distinctive features such as lightweight; corrosion resistance, high electrical and thermal conductivity, high stability for complex shapes and high tensile strength. The transportation sector is the largest end-use segment for this industry. The increasing emission laws by the government regulatory authorities, along with consumer demand for a higher fuel-efficient vehicle is developing a necessity for aluminum casting. An example of increased operations for the industry includes the replacement of iron and steel components in a vehicle with lightweight high-quality aluminum in order to increase the fuel efficiency. The aluminum die casting product is ideal for electronic connectors and housings die to its excellent electrical performance and shielding properties, even in high-temperature environments.

 

Another sector regarding the aluminum die casting demand includes building and construction in developing economies particularly in the Asia Pacific region. Aluminum Die Casting is associated with the creation of products including windows, cladding, curtain walling, prefabricated buildings, shop partitions, and fittings. Also, aluminum die casting products are used in aerospace operations or airplanes all around the world. The aerospace industry wants to produce a denser and larger quality product at lower costs for these air-frame components as aircraft continue to grow in size along with population rates.

 

According to Transparency Market Research, the Asia Pacific region accounts for over the half the share in the global market for aluminum castings. In the years ahead, the region is expected to further increase its share by pulling in the maximum Compound Annual Growth Rate of 5.3% during the forecast period between 2017 and 2025, and the powerhouse of China taking most of the credit. This market region is expected to become US $22.67 bn by 2025. Another important driving force includes the regions of Europe and North America in the global market for aluminum castings. While Europe is expected to register a Compound Annual Growth Rate of 5.1% during the forecast period to become worth US $9.45 bn, and the North America regions is expected to rise at a Compound Annual Growth Rate of 4.9% to become worth US $4.22 bn by the end of the year 2025. The statistics provided in this article express the importance in future Aluminum Die Casting growth for global production needs.

 

If you have requirement of aluminum die casting parts, I recommend you to visit Champion H&C Inc. – they are the professional aluminium die casting manufacturer in Taiwan. With years of experience, they can provide and custom best-quality die casting products for customers. Now, contact with Champion H&C to get more information of die casting services!

 

Article Source: https://www.phbcorp.com/what-is-aluminum-die-casting/

The Best Casting Process for Your Needs

In the field of metal work, various methods of casting are used to turn molten metals into specific shapes for use in commercial and industrial products. Within each casting process, a cavity is formed in which molten metal is poured either with gravity or high pressure. After a number of seconds have passed, the metal solidifies and the newly hardened casting is released from the mold or form.

 

Casting is most often employed to make intricate metal objects that would otherwise be complicated and much costlier to produce with different methods.

 

The process of casting has existed since ancient times. Some of the earliest examples of metal casting exist today in the form of jewelry, tools and sculptures that have been retrieved from archeological sites and put on display in museums around the world. Early methods of casting included plaster mold casting and lost wax casting.

 

Today, the methods of casting fall into the non-expendable and expendable categories. Other variants of the two categories include the methods used to fill cavities — including pressure and gravity — and the material used to form a particular mold.

 

First, there’s the non-expendable type of casting, which would account for any method in which the mold can be used again. Examples of non-expendable casting include permanent mold and die casting methods, in which the molding cavities are made of metal. Non-expendable casting is often favored for its ability to produce uniform parts at high volumes.

 

Expendable casting accounts for any method in which the mold is discarded after a single use. Examples in this category include sand and plaster casting, in which molten metal is poured into a cavity that is then broken away to reveal a finished casting. A further example of expendable casting is investment casting, a modern version of lost wax casting, in which molds are formed around wax patterns, which are then melted away to reveal hard ceramic cavities for subsequent metal molding.

 

Aluminum Die Casting

With aluminum die casting, a process takes place where molten metal is forced into a cavity in which a mold is formed. The process is achieved with a pair of steel dies that have been machined into particular shapes, which form the molding cavity when joined together. A similar process can also be applied with castings made of copper, magnesium and other metals.

 

The aluminum die casting process is divided into four stages: preparation, fill, ejection and trim off the gate.

 

First, a lubricant or die release agent is applied to each half of the cavity in preparation for the injection of the metal to be cast. Next, the dies are brought together and the cavity — in some cases one, in some cases two or more — is filled with molten metal under high pressure, which is maintained until the casting hardens.

 

A waiting period follows, after which the metal will have hardened into its final shape. With that step completed, the dies are separated and the castings are pushed out of the mold with ejector pins. Afterward, the parts that comprise the scrap — runners, sprues, overflows etc. — are trimmed away. In some cases, the finished shape will then receive sanding or polishing along the surfaces.

 

The high pressure at which the cavity is filled is crucial to the process because this prevents any part of the casting from hardening prematurely. This also ensures that the entire cavity is filled with no discontinuity, which could otherwise occur in die castings with complex shape formations. High pressure also eliminates the possibility of air bubbles, while the entrapment of air is further avoided with vents along the dies surfaces.

 

Aluminum die castings can also be produced with secondary features on molds, such as holes and grooves. Aluminum die casting is used to create everything from marine and sporting components to oil pumps, engine cradles, transmission transfer cases, heatsinks, enclosures, and brake components. The process is generally reserved for high-volume industrial productions.

 

Sand Casting

In the process known as sand casting, hardened casts of sand are used within a gating system to mold metals and other materials into shape. The sand is formed around patterns, which form cavities within the sand that are subsequently filled with molten metal. Due to sand’s heat-resistant quality, sand casting accounts for the vast majority of metal mold production.

 

To make the sand castings, sand is mixed with clay, water and sometimes other substances. The process here is a lot different than die casting because the hard sand that forms the mold is broken away and dispensed with afterward. Nonetheless, sand castings are often used to produce complex molds that are harder to make with die castings.

 

The process of sand casting is divided into several steps. First, a pattern is placed into the sand, where a cavity is then formed within the sand through the application of gating, after which the pattern is removed. In some cases, the cavity will be rather complex, with multiple grooves and several turns, twists and corridors.

 

Next, the cavity within the sand is filled at high pressure with molten metal. Once the metal has cooled into a hardened shape, the sand cast is broken away and the mold is removed. The finished mold might then be modified in whichever way is necessary, whether it needs to be trimmed or buffered to a smooth shine.

 

Sand casting molds are commonly used to make complex metal objects, such as one-piece equipment parts with various contours that would be hard to produce through other casting methods. Examples include the trap pipes used in household plumbing systems and metal doorknobs and lampshades.

 

Sand casting is also used for artistic items such as living room fixtures and metal sculptures. Sand casts are even used in jewelry production for items such as rings and metal bracelets. Whether the finished product is complex or simple, sand casting is a reliable method that allows manufacturers to form exact shapes with the utmost precision and detail.

 

V-Casting

An alternate form of sand casting is known as vacuum molding, or V-casting, which involves the use of unbonded sand. V-casting is often employed in the production of ferrous and non-ferrous metal molds.

 

The process makes it possible to form molds without the use of pressurized compaction methods, such as squeezing and blowing. Instead, clean molds are achieved with dry sand and vacuum pressure. V-casting allows manufacturers to do away with sand mixers and other equipment required for hardened sand.

 

V-casting can be carried out with a simple arsenal that consists of a vacuum system, a pattern, a film heater, a flask and a vibration surface. The process is generally clean and free of fumes or odors. Once finished, the dry sand is simply recycled for the next application. As such, V-casting is one of the most waste-free methods by which molds are cast for metal products.

 

In V-casting, patterns are placed onto boards with vacuum chamber vents. Heat-softened sheets of plastic are then placed over the pattern and the vacuums are activated. This causes the plastic to wrap tightly to the details of the pattern. Once hardened, the pattern is removed from the mold. Then, a vacuum process is utilized to pull molten aluminum through the cavities.

 

V-casting is often favored due to its ability to produce fine finishes with precise dimensions. A multitude of shapes can be achieved with the method, whether the mold is lightweight or heavy. The process allows you to reuse patterns multiple times and leaves little scrap excess material upon completion.

 

Investment Casting

Investment casting is a modern-day method of lost wax casting, which has been used for thousands of years in the creation of art fixtures, figures and masks. Archeological finds throughout Eurasia have included plates, vases and furnishings made with earlier forms of the wax casting method.

 

Investment casting is favored in a variety of industrial productions because of its versatility and accuracy of detail. Numerous mechanical pieces, such as valves and turbines, are made from the process of investment casting.

 

First, a master pattern is made from wax, or sometimes from wax replicas of a preexisting non-wax pattern. Next, a mold is created, which is also referred to as the “master die.” Several different wax patterns can be combined into a bigger pattern for a single molding. For industrial applications, the wax patterns are applied to a sprue that connects to a mechanical arm.

 

Next, the wax molds are dipped in ceramic with factory machinery. Then, the mold is heated and the wax melts out from the surrounding ceramic mold. With the ceramic molds now empty, molten metals are poured into the cavities formed by the ceramic.

 

Once the metal inside the ceramic molds have hardened, the ceramic forms are broken away. Afterward, excess parts are removed from the metal shapes, which are then readied for their ultimate use.

 

Where to Find Die Casting Manufacturer?

Champion H&C Inc. is a professional manufacturer of specializing in kinds of die casting processes and CNC machined products. Such as aluminum die casting parts, zinc alloy die casting parts, CNC lathe machining parts, CNC turning parts, and much more products that you all can find on Champion H&C website. If you need more information about die casting process, please do not hesitate to send inquiry to contact with Champion H&C Inc. immediately.

 

 

Article Source: https://diecasting.com/blog/2017/07/31/best-casting-process-for-your-needs/

Aluminum Die Casting – A Closer Look at Its Finer Nuances

The introduction of aluminum die casting goes back to 1914, when aluminum was invented for the first time. Though die casting was developed way back in the 1800s, yet only alloys of various compositions of tin and lead were used. However, aluminum revolutionized the whole concept of this amazing process.

 

Aluminum is Ideal for Die Casting:

 

The reason for the growing popularity of aluminum in die casting aluminum industry is for its lightweight and anti-corrosion properties. Apart from that, this metal possesses high dimensional stability for complex shapes and thin walls. High thermal and electrical conductivity, as well as ability to withstand high temperatures have made aluminum die casting a much-preferred option these days.

 

Cold Chamber Machines and Aluminum Die Casting:

 

Usually cold chamber machines are used for die casting aluminum, aluminum come with high melting points. The process involves pouring molten metal into a ‘cold chamber,’ or cylindrical sleeve. This can be done either manually by a hand ladle or by an automatic ladle. The next step involves sealing the cold chamber port and forcing metal into the locked die at high pressures with the help of a hydraulically operated plunger.

 

Automated machines in Die Casting:

 

Die casting aluminum these days have improved a lot and manual operations have rightly replaced automated quality control. Today there are many different types of machines utilized in die casting method, which can make your work easy, save your time and increase your productivity. While some die-casters use different tools to lubricate dies, ladle metal into cold chamber machines others use them to integrate other functions like quenching and trimming castings.

 

Even for adjusting Casting machines and assuring steady castings there are microprocessors these days. You can obtain metal velocity, shot rod position, hydraulic pressure and other data through these machines. Finally, all these helps in proper statistical analysis in quality control.

 

Proper designing for quality Die Casting:

 

Apart from using automated machines, for getting the right Aluminum Die Casting products it is necessary to have a great team of designers who take proper care to collaborate with casting experts. This is an essential prerogative during the early stages of designing in order to get a quality final product eventually. This also helps in cutting down unnecessary expenditures during the tooling and the production phase in Aluminum Casting. Designing and proper planning always results in proper execution, which in turn provides products that are of quality and have longer shelf life. This applies to Zinc Casting as well.

 

Champion H&C Inc. is an expert in Zinc, Aluminum, Magnesium Alloy tooling and mold design and manufacture. We provide professional skill suggestion in Mold design to our customer that can reduce risk and save more time in trial mold step, special in save cost. Our service is in Precise tooling design, tooling manufacture, Accurate test tool and Fixture, which will be requested by Optical Insulation, Electric, Computer Parts, RF, IA products, Optic, Varies Connector and Industrial Component.

 

Article Source: http://EzineArticles.com/expert/Alyna_Watson/478325

Article Source: http://EzineArticles.com/5650332