The Difference Between Proportional vs. Directional vs. Servo Valves

Understanding the available technologies in fluid power is imperative in order to design the most efficient, cost effective, and energy saving system. Traditional hydraulic equipment designs used directional control valves almost exclusively.

 

These directional valves are sometimes referred to as either “switching” or “bang-bang” valves and can be used to control flow direction, flow volume and fluid pressure. These valves can be operated by either AC or DC power.

 

Directional Control Valves

 

Directional control valves have been commonly referred to as switching valves because they simply direct or “switch” fluid passing through the valve from the source of flow to one of a selection of available cylinder ports. The flow control variety of valve generally selects an orifice which only allows a specified volume of flow to pass. The specified volume controls the speed of a cylinder or hydraulic motor. Likewise, the pressure control type is used to select a particular pressure setting.

 

Changing direction, flow or pressure during machine operation with these valves would require a separate individual valve for each direction, flow or pressure desired. The hydraulic circuit would become quite complex very quickly!

 

Proportional Valves

 

The technological solution to these more complex circuits has been the development of proportional valves. These revolutionary valves allow infinite positioning of spools, thus providing infinitely adjustable flow volumes. Either stroke-controlled or force-controlled solenoids are used to achieve the infinite positioning of spools.

 

This variable positioning allows spools to be designed with metering notches to provide flow/speed control as well as directional control functions all in one valve, instead of requiring separate valves for direction and speed. The other major benefit is when the circuit requires more than one speed. The various speeds are achieved by changing the electrical signal level to deliver the flow/speed required. No additional hydraulic components are required! These proportional directional valves are controlled by DC power.

 

The proportional controls, used with their associated electronic controls, also add the desirable features of acceleration and deceleration. This offers a variety of machine cycles, safely operated at greater speeds, yet with controlled start and stop characteristics. Regulated acceleration and deceleration result in improved machine overall cycle times and production rates.

 

Servo Valves

 

The third type of hydraulic directional control technology is the servo valve. Servo valves are not a new technology as servo valves were first used in the 1940s. Servo valves operate with very high accuracy, very high repeatability, very low hysteresis, and very high frequency response. Servo valves are used in conjunction with more sophisticated electronics and closed loop systems. As a result, servo valves are always much more expensive. A proportional control valve system can be used to improve control of most machines without the high price tag of servo control systems.

 

If you need more information of directional control valves or other hydraulic control valves, I recommend you to visit Propiston Hydraulics Co., Ltd. – they are the professional manufacturer of piston pumps and flow control valves. To get more details, welcome to check out their website and feel free to contact with Propiston Hydraulics!

 

Article Source: https://www.qualityhydraulics.com/blog/what-proportional-valve/

Types of Transmission Oil Seals: Static and Dynamic

There are two main types of oil seal: static and dynamic. A static oil seal fits between two non-moving parts, a dynamic oil seal between a stationary part and a moving one. Most oil seals are made of synthetic rubber.

 

An example of a static seal is a simple ‘O’ ring. These seals can be found in such places as the oil filter used on combined automatic gearbox and engine units, on conventional gearbox front covers and in automatic gearboxes.

 

Dynamic seals are more complex in shape, with one or two lips, depending on where they are situated. These transmission oil seals are widely used in the transmission system of both front and rear-wheel-drive cars, where oil must be sealed in where a rotating shaft passes through a component. For example, at the outer end of a half shaft and on the differential pinion.

 

Types of Oil Seals

Dynamic seals also contain a thin coiled spring, called a ‘garter spring’, which holds the sealing lip in contact with the revolving shaft.

 

Many seals have a metal outer casing for added strength and ease of fitting. Because the seal is in constant contact with a moving part, dynamic seals eventually wear and begin to leak, and both dynamic and static seals deteriorate with age.

 

Most seals are inexpensive and easy to replace, but many are in places where you must do a lot of dismantling to get at them.

 

For example, gearbox oil seals (apart from the extension-housing seal on rear-wheel-drive cars) can be replaced only with the gearbox removed – a task best left to a garage.

 

However, the seals on the rear axle and final drive should all be possible to replace fairly easily, although special tools may be necessary.

 

After many miles and several new seals, the moving part against which the dynamic seal fits may wear.

 

Slight wear can sometimes be taken up by fitting a shim between the seal and its housing, to change the point of contact. But if a shaft becomes seriously grooved it must be replaced or repaired at a garage or engineering machine shop.

 

This is not a common occurrence, but any point at which a shaft rotates in a seal is a possible leak source. Check such points regularly.

 

When fitting and handling any oil seal, keep it and its sealing point absolutely free from dirt and grit. Make sure you fit the seal the right way round. The lip (or lips) always faces the oil it is sealing.

 

To get more information of transmission oil seals, I sincerely recommend you to visit ASA Oil Seals Co., Ltd. – they are the professional oil seal manufacturer in the industry. If you need much more choice of oil seals, please contact with ASA immediately!

 

Article Source: https://www.howacarworks.com/transmission/replacing-transmission-oil-seals

Do You Know What BTA Drilling Is?

What is BTA Drilling?

Start Here: Deep Hole Drilling Overview

BTA drilling is a deep hole drilling process that uses a specialized drilling tool on a long drill tube to produce deep holes in metal, from holes with a diameter of 20 mm [0.80 in] and larger, up to depth-to-diameter ratios of 400:1. BTA drilling is the most effective method of drilling deep holes, as it is a cleaner, more reliable and capable process than conventional twist drills, and can achieve larger diameters and higher feed rates than the alternative gundrilling.

 

BTA drilling tool heads are threaded or mounted onto long drill tubes, and use multiple cutting surfaces on a single tool to remove chips efficiently, exhausting them using high-pressure coolant through holes in the tool head, then out the drill tube and through the machining spindle. BTA tooling is available in brazed or inserted carbide configurations.

 

BTA stands for Boring and Trepanning Association, and is also sometimes referred to as STS (single tube system) drilling, as it uses one single drill tube for the BTA tool, compared to other processes such as ejector drilling, which use two.

 

BTA Drilling vs Gun Drilling

BTA drilling can achieve drill feed rates of typically 5-7 times faster than gundrilling at the same diameter, due to the tool design, more efficient chip exhaust, and machine design and power. BTA drilling machines introduce coolant around the tool head, and evacuate chips through the drill and machine spindle, compared to gundrilling, where coolant is introduced internally and chips exit through an external groove. BTA drilling is effective in holes from 20 – 200 mm [0.80 – 8.00 in], a greater size range than gundrilling.

 

Optimal Specifications for BTA Drilling

BTA deep hole drilling is the ideal process for a range of larger deep hole drilled depths and diameters. BTA drilling, and secondary processes, are capable of drilling extreme depth-to-diameter ratio holes while achieving strict tolerances.

 

BTA Tooling Diameter Range

  • 8 – 65 mm Brazed Disposable BTA
  • 10 – 114 mm Spade Drill BTA
  • 16 – 28 mm Indexable BTA, Single Insert
  • 25 mm +     Indexable BTA, Multiple Insert

 

BTA Drilling Equipment

Deep hole drilling machines that are designed to perform BTA and related processes are complex systems of high-precision components, designed and built for extremely deep holes and strict tolerances.

 

If you need more information of BTA drilling equipment, I sincerely recommend you to visit Honge Precision Industries Corp. – they can provide high-quality and high-performance BTA deep hole drilling machine for clients. To get more details of this hole drilling machine, welcome to check out their website and feel free to contact with Honge Precision Industries!

 

Article Source: https://www.unisig.com/information-and-resources/what-is-deep-hole-drilling/what-is-bta-drilling/

Central Impression Press Buyer’s Guide: Productivity vs. Cost Concerns

Maximum productivity at minimum cost! Mid web and wide web flexographers want it all from any new press that gets installed in their plants. High on their lists of demands: quick-change features, waste management assets, open access to print decks and all componentry they hold. “Compact and capable” is the mantra. The mission: control, control, control.

 

Another three Cs—“connectivity, customization and color”—are carefully evaluated in pursuit of peak performance. Energy efficiency is seen as desirable; ease of materials handling, attractive. Automated features are built into the design and are directly linked to press uptime, quality output and customer satisfaction. They impact registration, impression, tension, washup, temperature control, defect detection, etc.

 

Recognizing flexography as a highly sensitive process, today’s converters pride themselves on efficiency and versatility and they expect the same from their presses. They calibrate or fingerprint machinery, yet stand ready to adapt at a moment’s notice and compensate for every variable that arises.

 

Business partners are acutely familiar with these printers’ daily challenges and tribulations. Engineers dedicate hour after hour to addressing new needs as they are identified. FLEXO Magazine set out to learn more about those evolving needs, so the magazine recently approached representatives from major original equipment manufacturer (OEM) and asked list out 10 features should consider when evaluating the purchase of a mid-web or wide web central impression press.

 

Quality Control

Setup and breakdown of every job is the key to saving both time and money. Standard features are now driving quality control and resulting in noticeable continuous improvement. That’s the position held by John Pan, general manager, Kuen Yuh Machinery Engineering Co., Ltd. (KYMC). He contends that, “Automation is boosting productivity.”

 

John uses that word in listing out 50 percent of the top 10 concerns to address in evaluating a potential press purchase.

KYMC Euroflex CI Flexo Press

  • Auto-Register Control—a good and effective automatic pre-register control system can set all colors in register within 164-ft. (50-m.), as on an 8-color press
  • Auto-Impression Control—good and effective auto-impression control should be able to set the impression for all colors within 656-ft. (200-m.), as on an 8-color press. Most importantly, it can set the desired impression from the operator’s determination, not the machine’s
  • Auto Wash With Auto Ink Viscosity And Temperature Control—keeping ink under control is the key for quality print, therefore, ink viscosity and temperature control are equally important to the auto-wash system
  • Drum Cleaner—the drum cleaner really saves the operator a great amount of time and is an important issue for quality print production
  • Auto Defect Detection—100 percent full width defect detection certainly benefits uninterrupted quality control. It increases productivity through automatic print monitoring, reduces waste and complaints, and increases customer satisfaction
  • Print and Anilox Sleeve System—the sleeve system is becoming standard on every modern press, yet customers should pay attention to the type of sleeve they are acquiring. It will affect the quality of printing and the life of the sleeve
  • Auto Splice on Unwind and Rewind, And Reel Handling System—continuous running while orchestrating a reel change has become a challenge to the operator. He or she needs a system to help to load/unload the reel every 20 to 30 minutes easy and efficiently. Those systems include a trolley, lifting table, robot, etc.
  • Energy Saving Drying System—a high-efficiency drying system is required on a high-speed press, yet it needs to be energy saving as well. Heat recovery and/or the use of an energy saving heating element/source are becoming standard on every modern press
  • Hybrid Solution—thanks to the development of the electronic driving system, the link of post processes (finishing) on the press is no longer an issue. This includes: inline coating/lamination, inline digital printing, inline cutting/sheeting, inline bag making, etc.
  • Ready for Industry 4.0—the CI flexo press must demonstrate interconnectivity, with major components monitored through any mobile device. It must also be able to connect to external management systems like APS, MES and ERP

 

John predicts the industrial production revolution will continue. “All printers should prepare themselves. The most basic principle in the new industrial revolution is that their equipment has the ability to connect with other equipment or systems through the network.”

 

Standing in Unison

Fast-change, quick-set, operator-friendly, quality-minded machinery is what every OEM FLEXO talked to says converters expect of their flexo press. Material-minded and considerably equipped with automated features is translating to faster, cheaper, better, more efficient print production.

 

The advent, arrival and acceptance of the integrated and optimized press is driving the principle of “control without compromise” with continuous improvement evident with each passing year.

 

Article Source: Flexographic Technical Association

Do You Know What Film Capacitors Are?

Film capacitors are capacitors which use a thin plastic film as the dielectric. This film is made extremely thin using a sophisticated film drawing process. Once the film is manufactured, it may be metallized or left untreated, depending on the needed properties of the capacitor. Electrodes are then added and the assembly is mounted into a case which protects it from environmental factors. They are used in many applications because of their stability, low inductance and low cost. There are many types of film capacitors, including polyester film, metallized film, polypropylene film, PTFE film and polystyrene film. The core difference between these capacitor types is the material used as the dielectric, and the proper dielectric must be chosen according to the application.

 

PTFE film capacitors, for example, are heat-resistant and used in aerospace and military technology, while metallized polyester film capacitors are used in applications that require long term stability at a relatively low. Cheaper plastics are used if cost is a bigger concern than performance.

 

Film Capacitor Definition

A film capacitor is a capacitor that uses a thin plastic film as the dielectric. They are relatively cheap, stable over time and have low self-inductance and ESR, while some film capacitors can withstand large reactive power values.

 

Characteristics

Film capacitors are widely used because of their superior characteristics. This capacitor type is not polarized, which makes them suitable for AC signal and power use. Film capacitors can be made with very high precision capacitance values, and they retain that value longer than other capacitor types. This means that the aging process is generally slower than in other capacitor types, such as the electrolytic capacitor.

 

Film capacitors have a long shelf and service life, and are very reliable, with a very low average failure rate. They have low ESR (Equivalent Series Resistance), low self-inductance (ESL), and as a result very low dissipation factors. They can be made to withstand voltages in the kilovolt range and can provide very high surge current pulses. A special class of film capacitors, which is called power film capacitors, is available, and this class of film capacitors can withstand reactive power in excess of 200 volt-amperes. These capacitors may have special screw-type terminals which can withstand high currents. Screw-type terminals replace soldered joints because power film capacitors sometimes need to be changed in the field.

 

Unfortunately, their superior electrical properties and stability come at a price. Film capacitors are bulkier than their electrolytic equivalents, which mean that limited SMT (Surface – Mount Technology) packages are available. They can also burst into flames if overloaded, but this characteristic is somewhat common among different capacitor types.

 

Construction and Properties

Film capacitors are made of a thin dielectric film which may or may not be metallized on one side. The film is extremely thin, with the thickness being under 1 µm. After the film is drawn to the desired thickness, the film is cut into ribbons. The width of the ribbons depends on the capacity of the capacitor being produced. Two ribbons of film are wound together into a roll, which is often pressed into an oval shape so that it can fit into a rectangular case. This is important because rectangular components save precious space on the printed circuit board. Electrodes are added by connecting each of the two electrodes to one of the films. A voltage is applied to burn out any imperfections using the self-healing property of film capacitors. The case is then sealed using silicon oil to protect the film roll against moisture, and dipped in plastic to hermetically seal the interior.

 

Typical film capacitors have capacitances ranging from below 1nF to 30µF. They can be made in voltage ratings as low as 50V, up to above 2kV. They can be manufactured for use in high-vibration automotive environments, high temperature environments and high-power applications. Film capacitors offer low losses and high efficiency while providing a long service life.

 

Applications for Film Capacitors

Power film capacitors are used in power electronics devices, phase shifters, X-ray flashes and pulsed lasers, while the low power variants are used as decoupling capacitors, filters and in A/D convertors. Other notable applications are safety capacitors, electromagnetic interference suppression, fluorescent light ballasts and snubber capacitors.

 

Lighting ballasts are used for proper starting and operation of fluorescent lights. When ballast is faulty, the light will flicker or fail to start properly. Older ballasts used only an inductor, a solution which provides a poor power factor. New designs use a switched power supply which relies on film capacitors for power factor correction.

Snubber capacitors are protective devices which damp or “snub” inductive kickback voltage spikes. These circuits often use film capacitors because of their low self-inductance, high peak current and low ESR, which are all critical factors in a snubber design. Polypropylene film capacitors are most often used in this type of circuit. Snubbers are used in many areas of electronics, especially power electronics in devices such as flyback DC-DC converters and others.

 

Film capacitors can also be used in a more conventional way as voltage smoothing capacitors, in filters, audio crossovers. They can be used to store energy and release it in a high-current pulse when needed. High-current electrical pulses are used to power pulsed lasers or generate lighting discharges.

 

Zonkas Electronic was founded as professional capacitor manufacturer, especially in offering Film Capacitors. If you need more information of film capacitors and other capacitors, please do not hesitate to visit Zonkas Electronic Co., Ltd.

 

Read more http://www.capacitorguide.com/film-capacitor/

Packaging Equipment Market Projected To Exceed $47 Billion By 2024

The packaging equipment market is set to grow from its current market value of more than $38 billion to more than $47 billion by 2024, according to a new research report from Global Market Insights Inc. (Selbyville, DE).
Packaging Equipment Industry By 2024
The growing adoption of automation in several industrial sectors is driving growth. Technological advances provide several advantages to industries using these products in packaging applications. For instance, smart sensors offer fault detection, data collection, mobile connectivity and remote monitoring, boosting efficiency in processes and operations performed in factories. Industries using traditional packaging equipment are focusing on substituting legacy machinery with new innovative equipment to enable mass production.

 

Demand for packaging equipment is primarily driven by the development of energy-efficient equipment, increasing adoption of automated packaging machines and consumer demand for personal care goods. Growing demand for packaging robots from several end-use industries is also a key factor in the packaging machinery market. These machines play a key role in ensuring product safety throughout the value chain. Equipment manufacturers are emphasizing solutions that have minimal environmental impact.

 

High costs associated with the development and installation of packaging equipment is restricting market growth. Small companies cannot afford to purchase these machines, forcing them to implement manual packaging techniques over automated systems, leading to adoption of an equipment rental business model. In addition, increasing maintenance costs are further hindering industry demand. Periodic maintenance and checks need to be performed to ensure proper operation of the equipment.

 

Palletizing equipment is experiencing a high adoption rate in several industrial sectors owing to the automated functions provided by the machines. These help in handling heavy loads and stacking cases, bags, bottles and cartons for packing and labeling. Advantages of these machines include easy circulation of commodities, manual and automatic handling, and reduced risk of product damage and worker injuries. Several companies are adopting automated palletizing machines to increase their manufacturing capabilities, deliver high-quality end-products and efficiently manage their processes.

 

The food and beverage industry accounted for more than 55% of packaging machinery market share in 2017. The packaging equipment market has witnessed growing demand for new machinery from developing markets due to the increase in spending on a wide range of processed and ready-to-go food and beverage products. To satisfy demand, several major companies operating in the food and beverage industry are looking to expand in untapped markets by building new plants and purchasing new machinery. In addition, with changing consumer preferences, food and beverage companies are expected to introduce a range of new products that require innovative or newer packaging machinery.

 

Asia Pacific is expected to see steady growth and will reach $18 billion by 2024, owing to the rise in the number of pharmaceutical companies. Countries including India, China, Japan and South Korea are moving toward automation and adoption of smart industrial solutions in the manufacturing processes. Stringent regulations that mandate pharmaceutical companies to follow certain standards for the packaging of drugs are positively driving the packaging machinery market. Several industrial players in the region are deploying liquid and solid packaging machinery to fulfill product requirements.

 

If you have interest in automatic packaging machines, I recommend you to visit KWT Machine Systems Co., Ltd. – they provide various packaging system in different industries and capacities working with diverse types and shapes of packages. To get more details, you can contact KWT for seeking an expert consultation. Rely on KWT to help you determining the best packaging solution for your business.

 

Article Source: PLASTICSTODAY

Guillotine vs. Swing Beam Shear

Guillotine Shear

A guillotine shear is a machine that can shear or cut various materials with a guillotine design. The word “guillotine” is associated with a blade that drops along a vertical track. This type of machine was primarily used in familiar history as a method of execution, particularly in the French Revolution, but the modern guillotine shear cutter is a tool used to form and shape products for a market.

 

The principles of the guillotine shear were incorporated into the design of metal shears and have been the primary design for all of these years. Some of the shortcomings of a guillotine shear are that it must run in gibs and ways and therefore need a certain amount of clearance which has a direct effect on the thinnest sheet than can be cut.

 

Also, the ram moves down with approximately 1 degree of backward motion. This allows the cut sheet to clear the back gauge and drop, although sometimes even this is not enough and the cut part is wedged between the lower blade and the back gauge.

 

When a guillotine shear has a throat it must be heavily re-enforced to avoid the deflection that would normally result from a deep throat. The apron of the upper ram is heavily gusseted to keep the blades parallel to the bottom blades. This system has worked well for hundreds of years however times change and new engineering becomes available.

 

Swing Beam Shear

On a swing beam shear the ram moves on bearings so there is no play what so ever. This allows the swing beam shear to be able to cut paper as long as the blades are sharp. The ram moves from a fulcrum point in the rear of the side frames giving the shear a massive amount of plate between it and the cutting point. This means almost no detectable deflection.

 

The back gauge is attached to the bottom of the cutting column and moves up as the blade goes down. This means there will never be a possibility for the material to become stuck between the blade and the back gauge.

 

Rather than gussets on the apron a swing beam shear wraps the entire ram as one solid gusset making it much stronger than a similarly gusseted ram. It can have a deep throat with no possibility of deflection and can cut even the thickest piece of metal with a very low rake angle.

 

In my opinion the swing beam shear reviewed the short comings of the guillotine shear and fixed them; however, it is important to remember that before making a decision on purchasing any kind of a shearing machine factors such as the type of shear, required capacity, productivity options, and safety should be carefully evaluated.

 

One important consideration used in deciding what shear is the right one for any job is the capacity required to perform the job. Most of the shears on the market today list capacities for mild steel and stainless steel. It is advised to compare a fabricator’s requirements to those of the actual machine.

 

Some shear capacities are rated on mild steel, which may have 60,000 pounds per square inch (PSI) tensile strength, while others are rated for A-36 steel or 80,000 PSI tensile strength. Capacities for stainless steel are almost always less than those for mild or A-36 steel. Surprisingly enough certain grades of aluminum require as much power to shear steel does. As always, when making a decision on any kind of metalworking machinery purchase, it is important to work with a reputable and knowledgeable company that can answer all the questions regarding the performance and capacity for the machine.

 

To get more details of swing beam shear, welcome to visit Yeh Chiun Industrial Co., Ltd. – they are the professional manufacturer of specializing in hydraulic shears. Learn more information, please do not hesitate to contact with Yeh Chiun anytime!

 

Article Source: https://www.cmarshallfab.com/guillotine-vs-swing-beam-shear/

There Are Plenty Of RFID-Blocking Products, But Do You Need Them?

Pickpockets don’t actually have to pick your pockets anymore. That’s the message you might see on TV or in ads warning that hackers can access your credit card data wirelessly, through something called radio frequency identification, or RFID. In the last few years, a whole RFID-blocking industry has sprung up, and it survives partly on confusion.

 

 

In videos like this YouTube demo, a man holds a black scanner the size of a large remote near another man’s back pocket and, voila, he’s got his credit card number and expiration date. That’s because his card has a tiny RFID sensor chip.

 

These chips are supposed to make life easier by emitting radio signals for fast identification. The technology helps keep track of livestock and inventory. It makes automatic payment on toll roads and faster scanning of passports possible, and, starting around 2004, brought us contactless payment with certain credit cards.

 

The problem, according to Walt Augustinowicz, is there’s no “off” button on these cards. “Anyone with a reader can try and surreptitiously gather data from them,” he says.

 

Augustinowicz is the godfather of RFID-blocking accessories. A decade ago, recognizing that people would want to block their credit cards from being “skimmed,” he started a company called Identity Stronghold. On his website, you can find shielded badge protectors, leather purses, and every style wallet imaginable — from Western bi-folds to purple faux-crocodile mini clutches. The products cost is anywhere from $10.00 to $50.00.

 

“We actually have special shielding cloth now that’s actually lined inside every wallet,” Augustinowicz says.

 

The industry championed by Augustinowicz has blown up since. REI and other companies sell a range of RFID-blocking products and say the number of customers looking for travel bags and credit card sleeves has been growing. That’s despite the fact that the percentage of credit cards with RFID chips in the U.S. is extremely small. If you see a symbol of radio waves on your credit card, it’s likely RFID enabled. (RFID chips are different from EMV chips. EMV chips, which require contact, are in most credit cards.) There aren’t exact numbers, but according to Phil Sealy, principal analyst at ABI Research, about 26 million were issued in 2016. That’s out of a total of 550 million payment cards in the U.S.

 

In other countries, the percentage of contactless cards is much higher, according to Roger Grimes, a computer security expert. Still, he says you probably don’t need to buy an RFID-blocking wallet.

 

“There’s probably hundreds of millions of financial crimes being done every year and so far zero, real life RFID crime,” he says.

 

Grimes says tracking RFID crime is just about impossible — it’s hard to know how someone’s information was stolen. But he says the reason it’s unlikely to happen is simple: thieves don’t want to waste their time.

 

“An RFID hacker has to make sure that there’s a lot of people walking by with RFID-enabled credit cards, [and] there’s good chance they’ll be caught on closed circuit cameras nearby, versus, I can for a lot less risk, go online on the Internet and buy thousands” of credit cards, their information and security codes “for literally a couple of a bucks a piece,” Grimes says.

 

Still, people are worried about electronic pickpocketing — worried enough to strap on RFID-blocking fanny packs, even skinny jeans. In 2014, the San Francisco-based clothing company Betabrand partnered with Norton Security to create the first pair of denim with RFID protected pockets. Aaron Magness, Betabrand’s vice president of marketing, says the pockets were lined with a nickel-and-copper fabric.

 

“They went up for crowdfunding and made it through crowdfunding, so there’s enough people that wanted the pants and it actually turned out to be quite successful,” Magness says. There was a downside. “If you have the ‘dark’ pocket, what ends up happening is your cell phone is constantly searching for signal and you’re going to drain your batteries pretty quickly,” he says. “So it may not be the best idea to have the fabric in the pocket.”

 

Eva Velasquez, president of the Identity Theft Resource Center, says from a consumer perspective, deciding whether to invest in RFID-blocking technology is all about evaluating risk. In the next few years, there will undoubtedly be millions more of these cards on the market. But for now, Velazquez is most concerned about other ways thieves steal personal information.

 

“Things like telephone scams,” she says. “Simply asking people for that information, pretending to be your bank or the IRS. There really is a plethora of ways.”

 

So, Velazquez says, if you’re in the market to buy a new wallet and decide to get one with RFID protection, it won’t hurt. But she encourages people to pay attention to the basics, like good password management and checking your credit reports.

 

Finally, if you’re worried about e-pickpocketing but don’t want to spend much money, you can make your own blocking wallet or wrap your cards or passport in a thick piece of aluminum foil. According to Consumer Reports, that works as well as most RFID protectors on the market.

 

If you have any interest in RFID blocking fabric, come and visit Taiwan Dyeing & Fabric Co., Ltd. – they are the professional industrial fabrics manufacturer in the industry. Their RFID complex materials are suitable for any fabrics such as Taffeta, Oxford, Ripstop and Canvas. To get more information of RFID blocking materials, welcome to check out their website and feel free to contact with TDF.

 

Article Source: https://www.npr.org/sections/alltechconsidered/2017/07/04/535518514/there-are-plenty-of-rfid-blocking-products-but-do-you-need-them

Buying a Wire EDM: Speed, Accuracy and Finish

What kind of surface finish can the purchaser of a wire EDM expect with today’s technology?

 

The two things every wire electrical discharge machine (EDM) user wants are speed and accuracy. Unfortunately, these objectives are usually incompatible. You don’t get speed with precision, and you can’t achieve high accuracy without also achieving a fine surface finish. Accuracy and surface finish go together. Speed and accuracy do not.

 

Cutting Speed, Accuracy and Surface Finish

EDM units from the early 1980s might achieve cutting speeds of 3 to 4 square inches per hour. With changes in machine design and power supplies, speeds of 17 square inches per hour became attainable in the 1990s. Today, with improved power supplies, working in conjunction with sophisticated adaptive controls, it is not uncommon to achieve 24, 37 and in some cases 45 square inches per hour.

 

The type of material and the height of the part being cut are critical as well. It is generally easier and faster to cut hardened tool steel than cold-rolled steel, for example. The harder material is the better. Typically, tool steels, carbide and special alloys have fewer impurities and lower porosity, making them easier to cut. Cold-rolled steel may contain impurities, so wire cutting is slower, and the surface finish is poorer. Although aluminum is easy to cut at higher speeds, the material is so soft that it is very difficult to get a good surface finish. Even a 30-microinch surface finish is difficult to achieve in aluminum. In contrast, it is possible to cut a 3-inch-thick carbide workpiece, with accuracies of ±0.0001 inch, and still produce a of 5-microinch Ra surface finish.

 

A typical wire EDM process consists of several passes, traveling at varying speeds. The first pass is generally a roughing pass designed to cut as quickly as possible, while accuracy and surface finish are less of a concern. Each subsequent skim cut travels at progressively faster speeds, takes less and less material while steadily improving dimensional accuracy and quality of the surface finish.

 

During the finish cuts, the tension on the wire is increased, the current is reduced, and the voltage gap narrowed, allowing the user to refine the spark and the distance the spark jumps from the wire to the part. The offset applied to the last finish pass might be as small as 3 microns. To achieve a 4- or 5-microinch Ra finish, as many as six or seven skim cuts might be necessary. Whereas the diameter of a cutting tool determines the offset in milling, the EDM controller applies a cutter comp based on the diameter of the wire. For example, if a 0.010-inch-diameter brass wire is used, the cutter comp will approach 0.005 inch plus a spark gap as the wire gets closer and closer to the part surface, and possibly finish at 0.0051 inch.

 

To achieve these close tolerances and super-fine surface finishes, every parameter must be properly set. The right type of EDM wire must be selected. The wire must have the right diameter and tensile strength. The power setting and tension of the wire must also be right. The condition of the deionized water and flushing arrangements must be optimized, as well.

 

Machine Accuracy

When attempting to hold ±0.0001-inch positional accuracy with wire EDM, the shop environment becomes a factor. For example, both steel and carbide have a thermal expansion coefficient of ~6.8 ppm per degree Fahrenheit. This means that, for every 2°F change in shop temperature, a 12-inch part could grow as much as 0.00016 inch, putting the operation over the 0.0001-inch tolerance it is trying to hold. To be successful under these conditions, a shop must be able to hold its ambient temperature within 1°F in either direction during an eight-hour period. Controlling the temperature of the dielectric solution to ±1°F also helps control the temperature of the machine and the workpiece.

 

The two most common machine designs use either ballscrews or linear-motion systems. In terms of machine accuracy, each design has pluses and minuses, which must be explored when choosing a wire EDM unit.

 

High-precision glass scales are used to negate the effects of pitch error or backlash on the linear feedback. On the best machines, high-resolution servodrives with fine increments are used to position the wire, thus improving surface finish and accuracy. Adaptive controls can compensate for thermal growth. High-speed circuitry in servomotors enables them to react instantaneously for finer control of the spark. High-peak power supplies can now put more electrical energy into the wire, greatly enhancing productivity.

 

If you need more information of EDM machine manufacturers, I sincerely recommend you to visit Excetek Technologies Co., Ltd. – the company specializes in manufacturing high-quality EDM machines. To get more details of EDM machining, welcome to check out their website and feel free to contact with Excetek!

 

Article Source: https://www.mmsonline.com/blog/post/buying-a-wire-edm-speed-accuracy-and-finish

Machining Performance Reveals Opportunities for Efficiency Gain, The Value of Tooling Choices That Save Time Will Be The Important Key

As more sophisticated insight into machining performance reveals opportunities for efficiency gain, the value of tooling choices that save time will become increasingly clear.

 

The promise of Industry 4.0 is great news for the adoption of advanced cutting tools. The reason: In interconnected manufacturing systems in which comprehensive data reveal the performance of the system, the impact of an advanced tool becomes clear.

 

Historically, the lack of clarity about manufacturing performance has been the main impediment to shops embracing high-end cutting tools. Tools typically account for just 3 percent of the per-piece production cost of a machined part. However, a tool’s price tag is more visible than its benefits. This fact leaves manufacturers frequently pursuing cost-saving steps that have little impact. For example, at 3 percent of unit cost, finding tooling that is one-third less expensive will only cut the per-piece part cost by 1 percent. Something similar is true of tool life: Even doubling tool life will only cut cost per part by 1.5 percent. However, finding tooling that provides for significantly faster machining or reduced non-cutting time enables each unit of machine and labor time to deliver more parts, likely cutting the cost per piece by 10 or 15 percent.

 

This argument makes sense in the abstract. The problem is, it can be hard to marshal the data to prove this case as it applies to a specific tool in a specific cut. That is where Industry 4.0 comes in. We are moving into a world in which manufacturing systems increasingly do marshal data such as this, and manufacturers increasingly make use of it.

 

To get more efficient cutting tools, come and visit Shin-Yain Industrial Co., Ltd., they can meet all your requirements of cutting tools.

 

Article Source: https://www.mmsonline.com/blog/post/iscar-leader-describes-tool-technology-for-machine-shops-acting-on-data