What You Should Know Before Buying A CNC Metal Laser Cutter?

What is a Laser Cutting Machine?

A laser cutting machine is a CNC laser machine that adopts CO2/Fiber laser source to cut metal and non-metal materials into different shapes. A laser cutting machine is equipped with laser cutting machine frame, laser generator, laser power supply, reflector path, laser cutting head, control panel, water chiller and CNC (Computer Numerical Control) system.

 

A laser cutting machine is also called as laser cutting system, laser cutting equipment, laser cutter, laser cutter machine, laser cut machine, laser cutting tool.

 

Laser Cutting Machine Applications

Laser cutting machines are widely used in industrial manufacturing applications, school education, small businesses, home business, small shop, home shop and hobbyists.

 

Laser cutting machines with fiber laser source are mainly used for cutting metal materials (metal sheets, metal plates, round or square metal tubes/pipes) of carbon steel, stainless steel, aluminum, copper, gold, alloy, iron, etc. Laser cutting machines with CO2 laser source are mainly used for cutting thin metal and non-metal materials of wood, acrylic, leather, fabric, paper, foam, glass, etc.

 

Advantages of CNC Laser Cutting Services

CNC laser cutting machine compared to other laser cutting machines, it has unique features and advantages. Let’s take a look at the advantages of fiber laser cutting machine.

 

  1. CNC laser electrical to optical conversion efficiency is high, conversion efficiency of more than 30%, the small power fiber lasers without to be equipped with chiller, air-cooled, greatly reduce the power consumption, save operation cost, and achieve the highest production efficiency.

 

  1. The operation of the laser only requires power, no need to generate additional gas laser, with the lowest operating and maintenance costs.

 

  1. CNC laser by semiconductor module and the redundancy design, resonant cavity free optical lens, does not require bootstrap time, with adjustment free, maintenance free, the advantages of high stability, reduce the cost of Spare parts and maintenance time, which is unmatched by traditional laser.

 

  1. CNC laser output wavelength of 1.064 microns is 1 / 10 of the CO2 wavelength, the output beam quality, high power density, is very conducive to the absorption of the metal material, has excellent cutting and welding ability, so that the least cost of processing.

 

  1. The whole optical routing optical fiber transmission, does not need the complex mirror and so on the light guiding system, the light path is simple, the structure is stable, the outside light road maintenance free.

 

  1. The cutting head contains a protective lens, the focusing mirror and other precious consumable little consumption.

 

  1. The light through the optical fiber are derived, the design of mechanical system is very simple and very easy to work with the robot or multidimensional integration.

 

  1. After a gate coupled with laser multi machine, light through the optical fiber, divided into multi Taiwan work at the same time, the function is easy to expand, upgrade convenient and simple.

 

  1. CNC laser has the advantages of small size, light weight, position mobile, small area.

 

If you have requirement of quality and efficiency CNC metal laser cutters, I can recommend you to visit Tailift Co., Ltd. – their laser cutting machines are famous in worldwide. Tailift offers to clients a wide range of laser cutting equipment and these laser cutters are designed for a variety of metal working applications. Today, contact with Tailift for more details!

 

Article Source:

https://www.stylecnc.com/products/laser-cutting-machine.html

https://www.quora.com/What-are-advantages-of-CNC-laser-cutting-services

3 Benefits of Automated Assembly

Automatic assembly machine is a wonderful innovation. If a company is looking to turn to automated assembly machine, there are a lot of amazing benefits that the company will get out of it. Assembly machines offer a ton of pros for manufacturers.

 

One benefit of automated assembly is the quicker turnaround. As long as the machinery is used smart and efficiently, it reduces the turnaround time for projects. You are able to combine a number of assembly capabilities or production steps into one single step.

 

Automated assembly also offers higher quality production. It enhances the production quality. Certain tasks, such as aligned press fits, are difficult to be done when performed manually. Through automation, they can be done much more efficiently and accurately. It also provides a high degree of conformity across pieces. This is another aspect that’s difficult to achieve when performed manually.

 

One last benefit of automated assembly is that it reduces labor costs. Automated assembly offers both direct and indirect labor cost savings. The direct savings are very clear. When something becomes automated, it frees up time for employees. Employees no longer have to perform the automated task so they are able to perform other tasks that are unable to be automated and will help the company.

 

The indirect savings, while not as clear, are just as beneficial. Switching to automated assembly can reduce material handling and component orientation time, in-process inventory, when replacing batch operations, finished product inventory, scrap, defective pieces, and personnel training. All of these reductions can save manufacturers a lot of money in the end.

 

If you have requirement or need more information of automatic assembly machines, you can come and visit Detzo Co., Ltd. – they are the professional custom machine manufacturer in Taiwan. You can find a wide range of automated production lines at Detzo. Now, contact with Detzo at +886-2-22983317 for more details!

 

Article Source: http://www.norwalt.com/three-benefits-of-automated-assembly.html

Benefits of Using Automatic Lathes

No matter their size, CNC lathes are designed to make intricate cuts on different types of material, specifically wood, plastic, and metal—making CNC machines key players in glassworking, metal spinning, metalworking, and wood turning. These machines can be used to produce anything from plane surfaces and screw threads to three-dimensional, complex products. And, because they’re easily set up and operated, CNC lathes are a growing necessity for companies of any size and production level.

These machines offer tremendous repeat-ability, top-notch accuracy, versatile functionality, and customized programming, making CNC lathes the perfect solution for the following industries: automotive, electronics, aerospace, firearm manufacturing, sporting and many others.

Your overall productivity depends on the efficiency of the tools you use, period. Ineffective equals slow. Slow equals less profit. In order to fulfill your work orders and gain higher production levels, you need to have the right machine, and that machine needs to be in the highest condition to perform.

Article Source: https://asimachinetool.com/blog/benefits-of-using-cnc-lathes/

Why Choose A CNC High Precision Grinding Machine?

If you’re working on complex workpieces that normal centerless grinding machines can’t handle, CNC high precision grinding machines may be the best choice for your company.

 

CNC high precision grinding machines come in two types: cylindrical grinding machines and surface grinding machines. These devices perform a final, ultra-precise grinding stage that removes material to as little as 200 nm per pass. Also, at such rates of material removal (200nm/pass), there is only negligible heat generation – even without applying coolant. This makes it rare for the metallurgical characteristics of the workpiece to be affected.

 

In addition, CNC high precision grinding machines make it easy to machine components with intricate internal features. You won’t have to use several machines to carry out the external grinding and the internal grinding. One machine is enough to do both.

 

Also, due to the high precision of the machined parts, there’s a better consistency of what’s produced. Again, the entire grinding process is computer controlled with no human input that could lead to errors. Once the settings are made, every part is machined with exact dimensional accuracy.

 

CNC high precision grinding machines can be used on a wide variety of materials including steel, hardened aluminum, brass, plated aluminum, bronze, powdered metals, tungsten carbide, plastics, and titanium alloy. CNC high precision grinding machines are also the best choice for use in machining bearings, bushings, valves, shafts, pistons, sleeves, industrial nozzles, and industrial needles. These types of parts all require very high precision in both dimensional accuracy and surface finish.

 

If you need more information of high precision grinding machines, I recommend you to visit SIGMA CNC Technology Machinery Co., Ltd. – they are the professional manufacturer of specializing in grinding machines and machining centers. Now, check out their website and feel free to contact with SIGMA for more details!

 

Article Source: https://www.maxgrind.com/cnc-high-precision-grinding-machine/

Victor Taichung Sees 70% of Orders for Customized Machine Tools

Taiwan-based machine maker Victor Taichung Machinery Works has coped with waning competitiveness in prices for the export markets by offering customized manufacturing services to create product differentiation, with around 70% of orders associated with customization, according to company chairman MH Huang.

 

Huang said that Taiwan machine tool makers used to see their quotes some 30-40% lower than those offered by their biggest competitors from Japan, but such a price competitiveness has been significantly undermined by the sharp depreciation of the Japanese yen. As a result, international customers have turned to Japan machine tool brands, directly squeezing the survival space for Taiwan makers.

 

Huang said that since 2013, Victor Taichung has maintained a customer value-creating application center, gathering the firm’s experienced sales staff and engineers to directly face customers and respond to their actual needs. This way, Victor Taichung can agilely adjust its product development strategies based on direct responses from customers, thus effectively boosting product values and customer loyalty through customized production services.

 

Huang stressed that Taiwan machine tool makers cannot compete well with China and Korea rivals in terms of production volume of low- to medium-tier models or with Japan makers in the market for high-end products. Accordingly, he indicated, it will be a major challenge for business transformation of Taiwan machine tool builders as to how they can work out differentiation to highlight corporate values and even develop the market for higher-end products.

 

If you have any interest in vertical machining centers and much more custom machine tools, come and visit Victor Taichung Machinery Works Co., Ltd. for more details!

 

Article Source: https://www.twmt.tw/victor-taichung-sees-70-of-orders-for-customized-machine-tools/

Do You Know What BTA Drilling Is?

What is BTA Drilling?

Start Here: Deep Hole Drilling Overview

BTA drilling is a deep hole drilling process that uses a specialized drilling tool on a long drill tube to produce deep holes in metal, from holes with a diameter of 20 mm [0.80 in] and larger, up to depth-to-diameter ratios of 400:1. BTA drilling is the most effective method of drilling deep holes, as it is a cleaner, more reliable and capable process than conventional twist drills, and can achieve larger diameters and higher feed rates than the alternative gundrilling.

 

BTA drilling tool heads are threaded or mounted onto long drill tubes, and use multiple cutting surfaces on a single tool to remove chips efficiently, exhausting them using high-pressure coolant through holes in the tool head, then out the drill tube and through the machining spindle. BTA tooling is available in brazed or inserted carbide configurations.

 

BTA stands for Boring and Trepanning Association, and is also sometimes referred to as STS (single tube system) drilling, as it uses one single drill tube for the BTA tool, compared to other processes such as ejector drilling, which use two.

 

BTA Drilling vs Gun Drilling

BTA drilling can achieve drill feed rates of typically 5-7 times faster than gundrilling at the same diameter, due to the tool design, more efficient chip exhaust, and machine design and power. BTA drilling machines introduce coolant around the tool head, and evacuate chips through the drill and machine spindle, compared to gundrilling, where coolant is introduced internally and chips exit through an external groove. BTA drilling is effective in holes from 20 – 200 mm [0.80 – 8.00 in], a greater size range than gundrilling.

 

Optimal Specifications for BTA Drilling

BTA deep hole drilling is the ideal process for a range of larger deep hole drilled depths and diameters. BTA drilling, and secondary processes, are capable of drilling extreme depth-to-diameter ratio holes while achieving strict tolerances.

 

BTA Tooling Diameter Range

  • 8 – 65 mm Brazed Disposable BTA
  • 10 – 114 mm Spade Drill BTA
  • 16 – 28 mm Indexable BTA, Single Insert
  • 25 mm +     Indexable BTA, Multiple Insert

 

BTA Drilling Equipment

Deep hole drilling machines that are designed to perform BTA and related processes are complex systems of high-precision components, designed and built for extremely deep holes and strict tolerances.

 

If you need more information of BTA drilling equipment, I sincerely recommend you to visit Honge Precision Industries Corp. – they can provide high-quality and high-performance BTA deep hole drilling machine for clients. To get more details of this hole drilling machine, welcome to check out their website and feel free to contact with Honge Precision Industries!

 

Article Source: https://www.unisig.com/information-and-resources/what-is-deep-hole-drilling/what-is-bta-drilling/

Buying a Wire EDM: Speed, Accuracy and Finish

What kind of surface finish can the purchaser of a wire EDM expect with today’s technology?

 

The two things every wire electrical discharge machine (EDM) user wants are speed and accuracy. Unfortunately, these objectives are usually incompatible. You don’t get speed with precision, and you can’t achieve high accuracy without also achieving a fine surface finish. Accuracy and surface finish go together. Speed and accuracy do not.

 

Cutting Speed, Accuracy and Surface Finish

EDM units from the early 1980s might achieve cutting speeds of 3 to 4 square inches per hour. With changes in machine design and power supplies, speeds of 17 square inches per hour became attainable in the 1990s. Today, with improved power supplies, working in conjunction with sophisticated adaptive controls, it is not uncommon to achieve 24, 37 and in some cases 45 square inches per hour.

 

The type of material and the height of the part being cut are critical as well. It is generally easier and faster to cut hardened tool steel than cold-rolled steel, for example. The harder material is the better. Typically, tool steels, carbide and special alloys have fewer impurities and lower porosity, making them easier to cut. Cold-rolled steel may contain impurities, so wire cutting is slower, and the surface finish is poorer. Although aluminum is easy to cut at higher speeds, the material is so soft that it is very difficult to get a good surface finish. Even a 30-microinch surface finish is difficult to achieve in aluminum. In contrast, it is possible to cut a 3-inch-thick carbide workpiece, with accuracies of ±0.0001 inch, and still produce a of 5-microinch Ra surface finish.

 

A typical wire EDM process consists of several passes, traveling at varying speeds. The first pass is generally a roughing pass designed to cut as quickly as possible, while accuracy and surface finish are less of a concern. Each subsequent skim cut travels at progressively faster speeds, takes less and less material while steadily improving dimensional accuracy and quality of the surface finish.

 

During the finish cuts, the tension on the wire is increased, the current is reduced, and the voltage gap narrowed, allowing the user to refine the spark and the distance the spark jumps from the wire to the part. The offset applied to the last finish pass might be as small as 3 microns. To achieve a 4- or 5-microinch Ra finish, as many as six or seven skim cuts might be necessary. Whereas the diameter of a cutting tool determines the offset in milling, the EDM controller applies a cutter comp based on the diameter of the wire. For example, if a 0.010-inch-diameter brass wire is used, the cutter comp will approach 0.005 inch plus a spark gap as the wire gets closer and closer to the part surface, and possibly finish at 0.0051 inch.

 

To achieve these close tolerances and super-fine surface finishes, every parameter must be properly set. The right type of EDM wire must be selected. The wire must have the right diameter and tensile strength. The power setting and tension of the wire must also be right. The condition of the deionized water and flushing arrangements must be optimized, as well.

 

Machine Accuracy

When attempting to hold ±0.0001-inch positional accuracy with wire EDM, the shop environment becomes a factor. For example, both steel and carbide have a thermal expansion coefficient of ~6.8 ppm per degree Fahrenheit. This means that, for every 2°F change in shop temperature, a 12-inch part could grow as much as 0.00016 inch, putting the operation over the 0.0001-inch tolerance it is trying to hold. To be successful under these conditions, a shop must be able to hold its ambient temperature within 1°F in either direction during an eight-hour period. Controlling the temperature of the dielectric solution to ±1°F also helps control the temperature of the machine and the workpiece.

 

The two most common machine designs use either ballscrews or linear-motion systems. In terms of machine accuracy, each design has pluses and minuses, which must be explored when choosing a wire EDM unit.

 

High-precision glass scales are used to negate the effects of pitch error or backlash on the linear feedback. On the best machines, high-resolution servodrives with fine increments are used to position the wire, thus improving surface finish and accuracy. Adaptive controls can compensate for thermal growth. High-speed circuitry in servomotors enables them to react instantaneously for finer control of the spark. High-peak power supplies can now put more electrical energy into the wire, greatly enhancing productivity.

 

If you need more information of EDM machine manufacturers, I sincerely recommend you to visit Excetek Technologies Co., Ltd. – the company specializes in manufacturing high-quality EDM machines. To get more details of EDM machining, welcome to check out their website and feel free to contact with Excetek!

 

Article Source: https://www.mmsonline.com/blog/post/buying-a-wire-edm-speed-accuracy-and-finish

Machining Performance Reveals Opportunities for Efficiency Gain, The Value of Tooling Choices That Save Time Will Be The Important Key

As more sophisticated insight into machining performance reveals opportunities for efficiency gain, the value of tooling choices that save time will become increasingly clear.

 

The promise of Industry 4.0 is great news for the adoption of advanced cutting tools. The reason: In interconnected manufacturing systems in which comprehensive data reveal the performance of the system, the impact of an advanced tool becomes clear.

 

Historically, the lack of clarity about manufacturing performance has been the main impediment to shops embracing high-end cutting tools. Tools typically account for just 3 percent of the per-piece production cost of a machined part. However, a tool’s price tag is more visible than its benefits. This fact leaves manufacturers frequently pursuing cost-saving steps that have little impact. For example, at 3 percent of unit cost, finding tooling that is one-third less expensive will only cut the per-piece part cost by 1 percent. Something similar is true of tool life: Even doubling tool life will only cut cost per part by 1.5 percent. However, finding tooling that provides for significantly faster machining or reduced non-cutting time enables each unit of machine and labor time to deliver more parts, likely cutting the cost per piece by 10 or 15 percent.

 

This argument makes sense in the abstract. The problem is, it can be hard to marshal the data to prove this case as it applies to a specific tool in a specific cut. That is where Industry 4.0 comes in. We are moving into a world in which manufacturing systems increasingly do marshal data such as this, and manufacturers increasingly make use of it.

 

To get more efficient cutting tools, come and visit Shin-Yain Industrial Co., Ltd., they can meet all your requirements of cutting tools.

 

Article Source: https://www.mmsonline.com/blog/post/iscar-leader-describes-tool-technology-for-machine-shops-acting-on-data

What’s The Best Type of Gearbox for Servo Applications?

Gearboxes provide torque multiplication, speed reduction, and inertia matching for motor-driven systems. Servo systems, specifically, require gearboxes that can supply not only high torque with low added inertia, but also high precision and stiffness. One type of gearbox meets all these criteria while providing relatively long operating life with low maintenance requirements: the planetary gearbox.

 

A planetary gearbox consists of multiple planetary gears, which revolve around a central sun gear while engaging with an internal gear and rotating on their own axes. The continuous engagement of the planetary gears means the load is shared by multiple teeth, allowing planetary designs to transmit high torque loads.

 

This load sharing among teeth also gives planetary gearboxes high torsional stiffness, making them ideal for processes that involve frequent start-stop motions or changes in rotational direction, which are common characteristics of servo applications. Most servo applications also require very precise positioning and planetary gearboxes are designed and manufactured to have low backlash, with as little as 1-2 arcmin in some cases.

 

Planetary gearboxes can use spur or helical gears. While spur gears can have higher torque ratings than helical gears, helical designs have smoother operation, less noise, and higher stiffness, making helical planetary gearboxes the preferred gearbox for servo applications.

 

When a gearbox is added to the drivetrain, the rotational speed delivered from the motor to the driven component is reduced by the amount of the gear ratio, which can allow the system to make better use of the servo motor’s speed-torque characteristics. Planetary gearboxes are able to accept very high input speeds and provide speed reduction of up to 10:1 for standard designs, with high-speed designs providing gear ratios (and, therefore, speed reduction) of 100:1 or higher.

 

Planetary gearboxes can be lubricated with either grease or oil, although a planetary gearbox for servo use (sometimes referred to as a “servo rated” or “servo” gearbox) is often lubricated with grease. In either case – grease or oil lubrication – planetary gearboxes are often lubricated for the life of the gearbox by the manufacturer, which eliminates maintenance for the end user.

 

The most important benefit of using a gearbox in a servo system is arguably its effect on the inertia of the load. The load inertia, which is reflected to the motor, is reduced by the square of the gear ratio. So, even a relatively small gear reduction can have a significant effect on the inertia ratio.

 

While a “perfect” inertia ratio of 1:1 is impractical in many cases, the goal of most servo system designs is to keep the inertia ratio as low as possible in order to achieve high system responsiveness. Reducing the load inertia by adding a gearbox to the system means that a smaller motor (with lower inertia) can be used, while still maintaining a desirable ratio between the motor and the load. And a planetary gearbox, by virtue of its compact design, has a low inertia itself, adding only a small amount to the load inertia that the motor must balance.

 

If you want to get more information of servo gearbox, I recommend you to visit Jia Cheng. It is a professional manufacturer of reducer, gearbox, and coupling. To get more details, welcome to check out their website and feel free to contact with Jia Cheng Precision Machinery Co., Ltd.

 

Article Source: https://www.motioncontroltips.com/whats-the-best-type-of-gearbox-for-servo-applications/

Tips for Making Sheet-Metal Parts

Follow these straightforward guidelines to create durable parts that exactly meet your design’s requirements.

 

In sheet-metal fabrication, parts are formed from metal sheets by punching, cutting, stamping, and bending. 3D CAD files are created using a host of different CAD packages and then converted into machine code, which controls machines that precisely cut and form the sheets into the final parts. Sheet-metal parts are known for their durability, which makes them great for a wide variety of applications. Parts for low-volume prototypes and high-volume production runs are most cost-effective due to large initial setup and material costs.

 

Below are some tips and guidelines for designing sheet-metal parts. If you follow the design advice and maintain the tolerances expressed in this article, you are more likely to end up with parts that meet the needs of your designs.

 

Wall Thickness

Parts should maintain a uniform wall thickness throughout their entirety, but this should be easy because parts are formed from a single sheet of metal.

 

Bends

Sheet-metal brakes bend sheets into a part’s desired geometry. Bends in the same plane should be designed in the same direction to avoid having to reorient the part during manufacturing, which will save money and time. Another trick is to keep the bend radius consistent to keep parts more cost-effective. Thick parts tend to become inaccurate, so they should be avoided if possible.

 

Rule of thumb: To prevent parts from fracturing or distorting, make sure to keep the inside bend radius at least equal to the sheet’s thickness.

 

Curls

Holes should be placed away from the curl at least a distance equal to the radius of the curl plus the material’s thickness. Bends should be at least six times the material’s thickness plus the radius of the curl.

 

Rule of thumb: Outside radius of curls must be at least twice the sheet’s thickness.

 

Countersinks

Countersinks must be separated from each other by a distance of at least 8 times the material thickness, from an edge by at least 4 times the material’s thickness, and from a bend by at least 3 times the material’s thickness.

 

Rule of thumb: The maximum depth for a countersink is 3.5 times the material’s thickness.

 

Hems

Hems are folds to the edge of a part that create rounded, safe edges. Hems may be open, flat, or tear-dropped, and tolerances depend on the hem’s radius, material thickness, and features near the hem. It should be noted that flat hems should be avoided because they risk fracturing the material at the bend.

 

Rule of thumb: For open hems, the inside diameter should at least equal to the material thickness (larger diameters tend to lose their circular shapes); and the return length should be at least 4 times the material’s thickness. Tear-dropped hems must maintain an inside diameter of at least equal to the material’s thickness, an opening of at least ¼ the material’s thickness, and the return length should also be at least 4 times the material’s thickness.

 

Holes and Slots

Holes and slots may become deformed if positioned near a bend. The minimum distance that holes should be placed from a bend is a function of the material thickness, bend radius, and the hole’s diameter. Holes should be at least 2.5 times the material thickness plus the bend radius away from any bends. Slots should be placed 4 times the material’s thickness plus the bend radius away from the bend.

 

Be sure to put holes and slots at least twice the material’s thickness from an edge to avoid a “bulging” effect. And holes should be separated from each other by at least 6 times the material’s thickness.

 

Rule of thumb: Keep hole and slot diameters at least as large as the material’s thickness. Higher-strength materials require larger diameters.

 

Notches and Tabs

Notches must be at least one-eighth of an inch (3.175 mm) away from each other. For bends, notches must be at least 3 times the material’s thickness plus the bend radius. Tabs must be at least 0.04 inches (1 mm) from one another or the material’s thickness, whichever is greater.

 

Rule of thumb: Notches must be at least 0.04 inches (1 mm) thick or as thick as the material, whichever is greater. A tab should not be any longer than 5 times its width. Tabs must be at least 0.126 inches (3.2 mm) thick, or two times the material’s thickness, whichever is greater. Tab length should be no larger than 5 times its width.

 

Corner Fillets and Relief Cuts

Sheet-metal parts may have sharp corners, but designing a fillet of ½ the material’s thickness will make parts more cost-effective.

 

Relief cuts help parts avoid “overhangs” and tearing at bends. Overhangs become more prominent for thicker parts with smaller bend radii, and may even be as large as one half of the material’s thickness. Bends made too close to an edge may cause tearing.

 

Rule of thumb: Relief cuts for bends must be at least one sheet’s thickness in width, and be longer than the bend radius.

 

If you have any interest in sheet metal process, I recommend you to visit the website of Tailift Co., Ltd. – they are the professional manufacturer for kinds of high-quality sheet metal machines and punch presses. To get more information of sheet metal machine series, please do not hesitate to check out their website and feel free to contact with Tailift.

 

Article Source: https://www.machinedesign.com/mechanical/tips-making-sheet-metal-parts