Which Pump Will Work With Your Portable Hydraulic System?

Portable hydraulic pumps are taking over more tasks that would otherwise require dangerous and strenuous human labour. These time and back-saving devices make significantly lighter work of a plethora of plant maintenance chores such as lifting equipment, tightening and loosening bolts, spreading flanges, and cutting corroded nuts. As powerful as these tools are, using the right pump is crucial to ensuring safety and efficiency on the job.

 

Because of the vast spectrum of capabilities and functions of portable hydraulic pumps, several factors should be taken into account when determining the appropriate power source. Hydraulic tool users can choose from three primary power sources: hand, electric, or air. Each method offers unique benefits relative to a wide range of situations.

 

Hand Pumps

A hydraulic hand-powered pump is usually the simplest and most economical type of pump to use. It is ideal for sporadic use of small or medium-sized hydraulic tools and is especially suitable for use in remote locations where other reliable power sources cannot be secured. In some potentially hazardous cases, a manually powered pump could be the only viable option as it does not require a source of power that could ignite.

 

Hand-operated pumps are available in sizes ranging from smaller single-speed devices weighing less than 5 kg to larger metal two-speed models weighing almost 45 kg. These pumps can come with oil capacities of up to eight litres and valving for either single or double-acting tools. The proper hand pump will meet requirements for system oil capacity, fluid compatibility, and valving type. Duty cycle is not a major issue because a hand pump is normally used for short one-time tasks.

 

The primary drawback with hand-powered pumps is its reliance on manual effort: its use is limited to the physical ability of its operator. Additionally, since one hand must be used to work the pump, the operator must sacrifice convenience and efficiency. Although hand-powered pumps are quite portable, they may not be operative in cramped locations, such as on ladders or catwalks, where operators may not be able to generate enough power. Further, these types of pumps require a flat surface for operating.

 

Electric Pumps

Electric pumps are the most common high-pressure pumps used after hand-powered pumps. Electric units come with versatile options of motor types, heat exchangers, valves and actuators, and operating voltages. The abundance of variations makes it challenging to choose the correct pump in this category.

 

While the major factors in selecting a pump are size, voltage, reservoir capacity, and valving, the additional aspects of electric motor and the necessary duty cycle are critical in choosing the best electric pump. Duty cycle is the time frame in which the pump will run at a particular percentage of full loads. Most high-pressure pumps are not suitable for higher duty cycles. Tasks that necessitate pressures over 5,000 psi for over an hour require pumps with coolers to regulate oil temperatures at a safe level of 65C (150F) or less. Electric motors are either induction or universal. The application determines the proper selection of either.

 

Induction motors operate for longer periods of time with greater durability. They perform at reduced noise levels, which is a significant benefit for jobs in restricted spaces. Induction motors are usually heavier, which explains why they are more commonly used in areas where a stationary, high-production pump is needed. An induction motor requires a highly stable electrical power source. A reduction in line voltage — even as small as 10 percent — could cause extensive damage to the motor. Using this kind of pump is not advisable for settings where electricity is sourced by a generator with an extension cord.

 

A universal motor pump may be ideal for situations that require the performance and speed of an electric pump and flexibility with portability and power sources. These motors are lighter than induction motors, provide more power in proportion to weight, and can function with less stable electrical power. If necessary, universal motors can run full torque on half of terminal rated voltage.

 

Air Pumps

Like a hand-powered pump, an air pump is relatively easy to use, portable and lightweight. Air pumps are available in many different sizes. They offer greater performance capabilities relative to hand-operated pumps. Another advantage is that they can be safely used in a location where an electrical current could be hazardous, provided that the pump is positioned at a sufficient distance from a compressor.

 

Reciprocating pumps are more popular than other air pumps, offering greater performance at lower cost. Usually, they are single-speed models that provide high flows at lower pressure since it can operate faster under diminished loads. However, a dual reciprocating air-powered pump is available for situations where high flow is necessary. With this design, the high-flow unit can stall at high pressure without an unloading valve.

 

A rotary air pump is ideal for higher performance needs. This type of pumps utilizes a rotary air motor which drives an ordinary hydraulic pump. However, rotary air pumps are typically noiser, heavier, and need more air than reciprocating pumps.

 

Sufficient air supply is the most critical factor to consider when choosing either air pump style. All air-powered pumps require a certain air flow rate to perform at their maximum level. If the airflow rate cannot be determined beforehand, a common standard is that each horsepower at the compressor will supply five scfm (approximately 142 litres).

 

Air pumps are suitable for operation in environments where pneumatic lines have been installed and are easily accessible. However, air pumps are typically more costly to use relative to electric pumps as compressed air tends to power tools less efficiently.

 

Guidelines for Pump Selection

 

  • Determine proper ratings for maximum operating pressure, oil capacity, flow rate, cycle frequency and duration, and valving.
  • Analyze cost factors including impact on productivity and manpower.
  • Research ergonomic and safety features. Weight, dimensions and portability must be considered to help determine the level of dexterity and strength the operator will need. Noise levels should be as low as possible.
  • Know the power source requirements. The power that is safely available often determines what pump is best to use.
  • Ensure that tool speed matches pump size needed. Power requirements increase exponentially with pump size. The ideal pump matches the necessary speed without superseding it.

 

If you need more information of portable hydraulic pump or other hydraulic pumps, I recommend you to visit YEOSHE Hydraulics Technology Co., Ltd. – they are the professional hydraulic pump and hydraulic unit supplier Taiwan. To get more details of hydraulic pumps, please do not hesitate to contact with YEOSHE.

 

Article Source: https://www.rg-group.com/blogs/which-pump-will-work-with-your-portable-hydraulic-system/

The Difference Between Proportional vs. Directional vs. Servo Valves

Understanding the available technologies in fluid power is imperative in order to design the most efficient, cost effective, and energy saving system. Traditional hydraulic equipment designs used directional control valves almost exclusively.

 

These directional valves are sometimes referred to as either “switching” or “bang-bang” valves and can be used to control flow direction, flow volume and fluid pressure. These valves can be operated by either AC or DC power.

 

Directional Control Valves

 

Directional control valves have been commonly referred to as switching valves because they simply direct or “switch” fluid passing through the valve from the source of flow to one of a selection of available cylinder ports. The flow control variety of valve generally selects an orifice which only allows a specified volume of flow to pass. The specified volume controls the speed of a cylinder or hydraulic motor. Likewise, the pressure control type is used to select a particular pressure setting.

 

Changing direction, flow or pressure during machine operation with these valves would require a separate individual valve for each direction, flow or pressure desired. The hydraulic circuit would become quite complex very quickly!

 

Proportional Valves

 

The technological solution to these more complex circuits has been the development of proportional valves. These revolutionary valves allow infinite positioning of spools, thus providing infinitely adjustable flow volumes. Either stroke-controlled or force-controlled solenoids are used to achieve the infinite positioning of spools.

 

This variable positioning allows spools to be designed with metering notches to provide flow/speed control as well as directional control functions all in one valve, instead of requiring separate valves for direction and speed. The other major benefit is when the circuit requires more than one speed. The various speeds are achieved by changing the electrical signal level to deliver the flow/speed required. No additional hydraulic components are required! These proportional directional valves are controlled by DC power.

 

The proportional controls, used with their associated electronic controls, also add the desirable features of acceleration and deceleration. This offers a variety of machine cycles, safely operated at greater speeds, yet with controlled start and stop characteristics. Regulated acceleration and deceleration result in improved machine overall cycle times and production rates.

 

Servo Valves

 

The third type of hydraulic directional control technology is the servo valve. Servo valves are not a new technology as servo valves were first used in the 1940s. Servo valves operate with very high accuracy, very high repeatability, very low hysteresis, and very high frequency response. Servo valves are used in conjunction with more sophisticated electronics and closed loop systems. As a result, servo valves are always much more expensive. A proportional control valve system can be used to improve control of most machines without the high price tag of servo control systems.

 

If you need more information of directional control valves or other hydraulic control valves, I recommend you to visit Propiston Hydraulics Co., Ltd. – they are the professional manufacturer of piston pumps and flow control valves. To get more details, welcome to check out their website and feel free to contact with Propiston Hydraulics!

 

Article Source: https://www.qualityhydraulics.com/blog/what-proportional-valve/

Understanding Hydraulic Pump Types and Differences

There are many types of machinery that are driven by or actuated by a hydraulic pump. There are a variety of different systems that are used to generate the flow and pressure required and they all have a hydraulic fluid and a system that controls the fluid and pressure with hydraulic valves. The pump needs to drive and this can be done by any force generating device such as an electric motor, an internal combustion engine, wind power or even a person operating a lever or crank.

 

How It Works

A hydraulic fluid is put under pressure by the hydraulic pump and the pressure can then be used to drive a piston or drive unit via hydraulic lines. A hydraulic valve is used to switch the force on and off to give control of the device. The control can be mechanical or electrical and may be actuated manually through a lever or a button or automatically through control system.

 

Volume and Pressure

There are many different hydraulic systems and they all used a combination of volume displacement and pressure to work. The higher the pressure the more robust a system needs to be because of the tremendous forces involved. In general higher pressure systems are more efficient and the higher the pressure the less flow is required for the same application of force. There are two general types of pumps fixed displacement types that displace the same amount of fluid every cycle and adjustable displacement types that can vary the displacement for increased or decreased pressure.

 

Pump Types

There are many different types of hydraulic pumps that have different applications. Screw type pumps are good for high volumes at relatively low pressure. They are simple and effective but not particularly efficient. A gear pump has a more balanced pressure and flow and is very simple but is not very efficient particularly as pressure increases.

 

The vane pump is widely used in system of medium pressure up to 150 bar and beyond. While the axial piston pump is used in applications that require the highest efficiency. Where high pressure above 300 bars is needed the radial piston pump combine high pressure and low flow rates needed in these applications.

 

If you need more information of hydraulic pumps, please come and visit ANSON Hydraulics Industrial Ltd. – they are the professional manufacturer of various vane pumps. You can find variable vane pump, fixed displacement vane pump, hydraulic power pack unit, and much more hydraulic pumps there. To get more details, welcome to check out their website and feel free to contact with ANSON.

 

Article Source: http://peerlessengineering.com/understanding-hydraulic-pump-types-and-differences/

Introduction of Globe Valves

Cast Steel Globe Valve

A globe valves is a linear motion valve and are primarily designed to stop, start and regulate flow. The disk of a Globe valve can be totally removed from the flowpath or it can completely close the flowpath.

 

Conventional Globe valves may be used for isolation and throttling services. Although these valves exhibit slightly higher pressure drops than straight=through valves (e.g., gate, plug, ball, etc.), they may be used where the pressure drop through the valve is not a controlling factor.

 

Because the entire system pressure exerted on the disc is transferred to the valve stem, the practical size limit for these valves is NPS 12 (DN 300). Globe valves larger than NPS 12 (DN 300) are an exception rather than the rule. Larger valves would require that enormous forces be exerted on the stem to open or close the valve under pressure. Globe valves in sizes up to NPS 48 (DN 1200) have been manufactured and used.

 

Globe valves are extensively employed to control flow. The range of flow control, pressure drop, and duty must be considered in the design of the valve to avert premature failure and to assure satisfactory service. Valves subjected to high-differential pressure-throttling service require specially designed valve trim.

 

Generally the maximum differential pressure across the valve disc should not exceed 20 percent of the maximum upstream pressure or 200 psi (1380 kPa), whichever is less. Valves with special trim may be designed for applications exceeding these differential pressure limits.

 

Advantages

  • Can be fast-acting
  • Precise control
  • Can be used in high-pressure systems

 

Disadvantages

  • High head loss
  • Large opening for disk assembly
  • Heavier than other valves
  • Cantilevered mounting of the disk to the stem
  • Low coefficient of flow
  • Not good for clean or sterile applications

 

The most common application of the globe valve is a standard water faucet. When the handle is turned, a disc is lowered or raised. When the disc is fully lowered, the water supply is shut off.

 

Typical Applications Of Globe Valves Include:

  • Cooling water systems where flow needs to be regulated
  • Fuel oil systems where flow is regulated and watertightness is of importance
  • High-point vents and low-point drains when watertightness and safety are major considerations
  • Feedwater, chemical feed, condenser air extraction and extraction drain systems
  • Boiler vents and drains, main steam vents and drains, and heater drains
  • Turbine seals and drains
  • Turbine lube oil system

 

If you need more choice of globe valves, I recommend that you can visit Nico Valves Corp. – the company specializes in kinds of high quality valves including cast steel globe valve, gate valve, check valve, threaded valve, and much more. Now, welcome to check out Nico’s website and feel free to contact them.

 

Article Source: https://2bnews.wordpress.com/2018/07/10/introduction-of-globe-valves-2/

3 Benefits of Hydraulic Pumps

A pump is a device which has many purposes and can be used for various tasks and in various industries. Usually pumps are used to transfer certain substances like gas or liquid from one place to another. There are many types of pumps, but one particular which is widely used is the hydraulic pump. These pumps can be either hydrostatic or hydrodynamic and are used mostly in hydraulic drive systems. Gear pumps, rotary vane pumps and screw pumps are the three most commonly used types of hydraulic pumps. All are used in many different industries.

 

Whereas most pumps use some external power source to operate, hydraulic pumps use the kinetic power of the water as their main source for operation. They are very durable, easy and relatively cheap to maintain and very practical. These pumps are also very efficient which is why they are common in many industries and inevitable tool for many companies. Here are few major benefits of hydraulic pumps.

 

The hydraulic pumps are very useful source of energy and power for many machines. They have a capability and are designed to push large amount of fluid through a metal cylinders. This is how these pumps transform mechanical energy into hydrostatic energy. Hydraulic pumps have been used for many years, but their popularity slowly dropped with the emergence of the electric and solar pumps. However, today, the interest for hydraulic pumps has increased as it is a very effective device for providing clean drinking water in rural areas or in the financially unstable countries which have battle the lack of water problem.

 

Also these pumps are widely used by government agencies when dealing with certain types of natural disasters such as floods. In the case of a flood, hydraulic pumps will quickly and effectively pump out excess water to reduce the overall damage to some extent. Households located in flooding areas should have one of these. They may look complicated but are really very easy to use and maintain and can find usage even in the most remote places. One of the biggest benefits that a hydraulic pump can provide is getting the water from underground sources that are not contaminated. The lack of clean water and the hygiene problems are major concerns in developing countries. The hydraulic pumps surely help a lot in solving such problems. This brilliant engineering invention can be used in almost any industry which is the main reason it is so popular.

 

If you need more information about hydraulic pump suppliers, I recommend that you can visit YEOSHE Hydraulics Co., Ltd. – the company specializes in kinds of pumps including hydraulic vane pump, tandem pump, excavator pump, etc. Learn more details, please do not hesitate to check out YEOSHE website.

 

 

Article Source: http://www.3benefitsof.com/3-benefits-of-hydraulic-pumps/

How to Locate Your Gas Shut Off Valve

How to find and operate shutoff valves for gas and water pipes? Don’t wait until you have a home emergency to try and find your gas or water shutoff valves. This article will help you locate them now. Taking the time to familiarize yourself with the valves can help you avoid a disaster later.

 

Finding The Shut Off Valves

Some things in life are worth learning before it’s too late—like the locations of your water and gas shutoff valves. Now granted, these shut off valves are often hidden in some dark, creepy corner of the house. But if a water pipe springs a leak, knowing where the shutoff valve is could save you thousands in water damage repairs. What’s more, you can’t make those major plumbing repairs or improvements unless you first turn off the water. The same goes for turning off the gas—though with some strict safety precautions, which we’ll talk about later.

 

Home water and gas systems contain two types of shutoff valves: main or master shutoff valves for stopping the flow of gas or water to the entire house, and individual or supply shutoff valves for specific appliances and fixtures. We’ll look at both types and tell you how to identify them (since they often look similar), where they are and how to operate them.

 

You’ll notice this story contains a lot of “oftens,” “usuallys” and “almost always’s.” That’s because valves vary greatly in location, shape and number, depending on the age of your house, the local codes and which part of the country you live in. This article covers the basics of each system.

 

Gas Shut Off Valves

Houses with natural gas have a main shutoff valve located just before the gas meter. This valve, often called the street-side valve, is normally a rectangular nub. When the long side of the nub or handle is parallel to the incoming gas line, it’s open and the gas is flowing. When it’s turned a quarter turn, perpendicular to the incoming pipe, it’s closed.

 

The street-side main shutoff valve must be opened and closed with a wrench, and, truth be told, gas companies don’t want you operating this valve; they only want their own employees, plumbing and heating contractors and fire department personnel to use it. They’d rather you use the house-side main shutoff valve located after the meter.

 

This house-side valve—usually a ball valve—may be located where the pipe first enters the house or farther down the line, but it will always be located before the first appliance. If iron pipe is transporting the gas, it’s often black; this differentiates it from similar-shaped, gray galvanized water pipe.

 

If your home is newer and you find a flexible copper pipe running from the meter into your utility room, you probably have a higher pressure gas system. In this case, your inside main shutoff valve is probably near your furnace or water heater, just before it enters a flying saucer–shaped doodad called a pressure regulator. There’s also a chance your home—especially if it’s older—doesn’t have a house-side main shutoff valve.

 

Well, don’t just sit there; get up and locate those valves! In addition to the house-side main shutoff valve, individual gas appliances should have a service or appliance shutoff valve that’s immediately accessible, in the same room and within 6 ft. of the appliance. These valves allow you to stop the flow of gas to your dryer, oven, furnace, water heater or gas fireplaces to make repairs or new installations without cutting off gas to your entire home.

 

Most service valves are single-lever ball valves; again, handle parallel to the line means gas is flowing, perpendicular means it’s cut off. On dryers and ranges, this valve is usually hidden behind them and can only be reached by sliding the appliance out from the wall. This service valve will usually be at the end of a fixed pipe and connected to a flexible supply pipe called an appliance connector. Take care not to kink or pinch this flexible pipe.

 

When you repair or replace a gas appliance, use these shutoff valves to stop the flow of gas. (Most pros replace the flexible connector when they replace the appliance.) If you discover you have a faulty supply valve, or your system doesn’t have one, turn off the gas using the house side main shutoff valve.

 

For those with propane or liquefied petroleum gas, there’s a main shutoff valve on the tank itself, and usually a main shutoff valve somewhere before the first appliance. Some valves (both gas and water) manufactured before 1980 contain a lubricant to help the valve seal better and operate more smoothly. In many cases, this lubricant will have hardened or reacted with the gas to make the valve difficult to turn. Applying gentle heat with a hair dryer and working the valve open and shut in stages will usually free it up again. Sometimes you need to use pliers to free the stuck handle.

 

Important! Now that you know where your gas valves are, also know this: it’s not always safe for you to turn these valves off in an emergency. When gas reaches a certain concentration in a room or house, the slightest spark can set off a tremendous explosion. A light switch or telephone—even static electricity from your clothes—can produce such a spark.

 

If you’re working near the main or individual gas valve and clearly know the source of the gas leak and that gas hasn’t been leaking for long, shut off the valve and get out. But if you’re uncertain of the source or how long the gas has been leaking, clear yourself and your family out and call the gas company or fire department from a neighbor’s house (not your own—remember, phones can generate sparks!). Always err on the side of caution.

 

It’s a good idea to get ready for gas emergencies before they happen, because sometimes projects involving gas lines don’t go as planned. When a gas project goes bad, that’s not the time to be searching for the right tool to shut the gas off at the meter. A good strategy is to buy an emergency gas meter wrench shutoff tool and secure it to the meter.

 

Also note: When you shut off main or individual gas valves, you’ll be extinguishing the pilot lights to certain appliances. Many newer appliances have “pilot light–less” electronic ignition systems, but if you have older appliances, you’ll need to relight the pilot lights. Most appliances have clear relighting directions on a label near the pilot light or in the instruction manual.

 

But some pilots are pretty darn hard to reach. If you’re uncomfortable with relighting the pilot light, hire a plumber or call your local gas service company.

 

If you need more information about automatic gas shut off valve, I recommend that you can visit the website of Alpha Brass Controls – the company specializes in kinds of brass gas valves and control thermostats. Contact with ABC for more details.

 

Article Source: The Family Handyman

Common Types of Pneumatic Valves

Pneumatic valves are one of an array of components responsible for controlling the pressure, rate, and amount of air as it moves through a pneumatic system. Pneumatic systems, which depend on the force of compressed air to transmit power, can be found in countless industrial applications, from pneumatic pressure power tools to diesel engines. Based on other components within a given application and the type of pneumatic system used, one of several types of pneumatic valves may be found at the heart of the device. Functional directional control valves, those that control the direction of air flow or inhibit flow all together, are a large class of pneumatic valves that houses multiple variants.

 

Functional Directional Control Valves

 

Many functional directional pneumatic control valves are classified based on the number of entry and exit ports they possess, the number of flow paths they create, and the mechanism by which ports are opened and closed.

 

Two-Way Directional Valve

 

A two-way directional valve passes air in two directions, through two ports which can be open or closed. If the valve ports are closed no air can flow through the valve. If the ports are open, air may move from the first port through the valve and through the second port or in the opposite direction.

 

Three-Way Directional Valve

 

A three-way directional valve has three ports, each of which serves a different purpose. The first port is used to connect the valve to an actuator or another device. The second port is connected to an air-flow. The third port is used as an exhaust exit. When the first and second ports are open and the third is closed, air moves through the valve to the device. When the first and third ports are open and the second port is closed, the actuator can vent exhaust.  Three-way valves are often connected to actuators in cylinders, or used in pairs and connected to double-acting cylinders.

 

Four-Way Directional Valves

 

A four-way directional valve has four distinct ports, two of which connect to actuators, one that connects to a pressurized air-flow, and one that serves as an exhaust pathway. They are among the most common types of valves found in pneumatic systems because the four distinct paths allow the valve to effectively reverse the motion of a motor or basic cylinder. An additional port is sometimes added to a four-way valve, making it a five-ported four-way valve. A four-way valve with an additional port is often used to provide dual pressure, meaning the valve can apply one of two kinds of pressure and alternate between the two depending on what the application requires. Alternatively, the valve can use the other port as a secondary exhaust port.

 

Spring Offset

 

This type of pneumatic valve classification refers to the manner in which air-flow direction is switched. For example, in a two-way directional valve, the valve is either open (air-flow is enabled) or closed (air-flow is prevented). In order for each port to assume an open or close position, an actuator moves a valve spool into position. To release the valve spool and return the pneumatic valve to its previous position, a spring releases the spool. A two-way directional valve that functions in this manner is also called a spring offset valve.

 

Resting State: Open v. Closed

 

In two-way directional spring offset valves, there are two positions they can assume when the connected actuator isn’t active: open or closed. In devices where an open resting position is standard, air moves freely through the valve. In a closed resting state, the air-flow is blocked. In three-way valves, one port is always open. In such cases, a closed resting state usually results in blocking the air-flow port, so pressure isn’t moving unless the device is turned on.

 

If you need more information about directional control valves and more pneumatic valves, welcome to check out the website of Ashun Fluid Power Co., Ltd. – the company specializes in kinds of valves and cylinders. You can find modular valves, directional control valves, pressure control valves, flow control valves, lift hydraulic cylinder and more products here. Get further details please feel free to send inquiry to Ashun.

 

Article Source: https://www.thomasnet.com/articles/pumps-valves-accessories/pneumatic-valves

Choosing Hydraulic Valves – New and Replacement

Hydraulic valves that are recognized by CETOP standards are interchangeable within most types of hydraulic equipment, making it easy to find a supplier that can provide valves suitable for use in your hydraulic equipment.

 

Valves in hydraulic equipment control and regulate the flow of hydraulic fluid through a system, but as there are different requirements for fluid flow in certain applications it is important that the right valve is used for each purpose.

 

Types of Hydraulic Valves Are Used For Each Right Purpose

 

Flow control valves can be configured to regulate the flow of fluid in two directions and are adjustable to allow for fine tuning of the flow rate. They control the movement of fluid in one direction, but in reverse the flow is free and cannot be regulated in the same was as it is when flowing forwards.

 

A pilot operated check valve is used to control the flow of hydraulic fluid to a cylinder, stopping it when needed to prevent unwanted movement of the cylinder.

 

A pressure relief valve is often used in conjunction with a pilot operated check valve or a solenoid valve to release the pressure contained by a pilot operated check valve, or to limit pressure in a control line leading to a solenoid valve.

 

Solenoid valves are often chosen over flow control valves for their ability to regulate the directional flow, instead of only being able to regulate in one direction. A flow control valve is suitable for applications where movement of a cylinder in one direction needs to be carefully regulated, but when it returns to the starting position no control is needed over the flow and speed of movement. They can be mounted in either direction, so it is up to the user which direction requires the control. For applications where control is needed over the flow rate in both directions (for example, in technologies that open and close gates or doors at a set speed) a solenoid valve is better as it allows for that fine control of movement and speed in both directions.

 

Replacement of Hydraulic Valves

 

In most cases a hydraulic valve will be replaced with one of the same type, and buying from YEOSHE ensures you will get a hydraulic valve that is ideal as a replacement even if your equipment is made by a different manufacturer. Sometimes a hydraulic valve needs to be replaced with one of a different type when machine specifications or usage changes, an example being a piece of machinery that used to use a flow control valve, but where there are operational advantages to having better control over the hydraulic flow in two directions.

 

Choosing the right type should be easy when replacing a hydraulic valve, as you can use the same type as before, but when designing a new piece of hydraulic machinery, the decision is a little harder. Understanding the basic function the machinery is required to perform is a must, but going a little further into the other functionality that may be required, or thinking about performance improvements that could be made with a different type of valve can inform a better design and result in hydraulic machinery that is more user friendly or that can fulfill more than the basic functions specified at the design stage.

 

If you need more information about hydraulic valves, please try to visit the website of YEOSHE Hydraulics Co., Ltd. The company can provide a variety of high quality industrial hydraulic valves for you to choose. Feel free to check out YEOSHE product pages and send inquiry to them.

 

 

Article Source: Hydraproducts Blog

How to Shut Off Your Home Gas Supply Valve

Shutting off utilities such as your home’s water supply or electrical power is fairly common—something you do whenever making a repair or upgrade. Shutting off your natural gas supply is not something that occurs very often, but there are still times you may need to shut off the gas supply in your home. Knowing how to do this is important, because when it’s necessary, it may need to be done in a hurry.

 

Reasons for Shutting Off the Gas

The main shutoff valve controlling you home’s natural gas supply may come into play during major construction or renovation involving gas lines, when closing up or shuttering a home, to prevent possible flood damage. Or, in rare instances, you may need to shut off the gas valve when a gas leak is suspected inside the home.

 

Once the valve is turned off, however, do not turn it back on by yourself. It must be turned on by a qualified person such as a gas company service technician or a licensed plumber. To be a “qualified person,” you must be able to confirm proper operation of all pilot lights and gas appliances once the gas valve is turned back on.

 

Location of the Main Shutoff Valve

The main gas shutoff valve is located next to the natural gas meter supplied by your utility company. Your gas meter may be located outside your home on an exterior wall, or it may be found inside your home on an outside wall—often in a basement or utility area, such as a garage or the mechanical room where the furnace or water heater are located.

 

How to Shut Off the Main Gas Valve

The main gas shut off valve is a large valve located next to the natural gas meter. If the valve handle is parallel to the gas pipe, then the gas supply valve is open and the gas is on.

 

  1. To close the valve, use a clamping plier, an adjustable wrench, or an open-end wrench, and turn the valve handle 90 degrees so it is fully perpendicular to the gas line. It is a good idea to keep a wrench handy for this purpose and keep it located next to the shutoff valve.

 

NOTE: Many natural gas meter valves provided by a utility company have a hole in the handle that will line up with a corresponding hole in the valve body when the gas valve is in the closed position. The utility company will use the hole to lock and/ or seal the valve in a closed position when the gas account is closed. When the holes in the valve handle are lined up, it indicates the valve is in the OFF position.

 

  1. To ensure sure the gas shutoff valve is, in fact, fully closed, note the dial numbers on the meter face and write them down. Then check back in about 10 minutes. If the numbers have not changed, then you know that the shutoff valve is fully closed.

 

If you want to gain more information about shut off valves, I recommend that you can visit Alpha Brass Controls: www.alphabrass.com. Their on / off valves are manufactured from the best quality Brass and verified and tested under the highest quality standards. All Alpha Brass Controls valves are 100% MIT and 100% leakage tested to ensure the standards of quality and safety. More details, try to send inquiry to them.

 

 

Article Source: https://www.thespruce.com/shut-off-home-gas-supply-valve-4125745

What Are The Different Types of Directional Control Valve?

In this article, I will list down the advantages and disadvantages of sliding spool and poppet valve.

 

Types of Directional Control Valves:

Sliding Spool, Poppet / Diagram, Rotary Spool, Rotary Disc, Slide.

 

Here, I only introduce Sliding Spool Valve and Poppet Valve. Let’s learn more information about them below:

 

Sliding Spool Valves

 

Sliding spool valves are the most common directional control valves used in transmission of pneumatic power to the actuator. They are available in various forms and sizes.

 

Advantages:

 

The main advantages of spool valves with seals are:

 

  1. Simple maintenance.
  2. Fully balanced spool design allowing air to be without creating spool movement.
  3. Relatively simple to attach controls.
  4. Stroke limiters can be used.
  5. Available in suitable forms.
  6. Connected to any port

 

Disadvantages:

 

The main disadvantages of spool valves with seals are:

 

  1. Larger body size.
  2. Higher wear rates.
  3. Require lubrication.
  4. Continuous leakage.
  5. Not suitable for high pressure applications.
  6. Slower response time.
  7. Require a better quality air.

 

Poppet Valves

 

Poppet valves come in a wide variety of forms and are the most useful valve in pneumatic services. It can be used as the pilot section of a solenoid controlled valve. Poppet valve construction varies in accordance with the valve function and flow requirements.

 

Advantages:

 

The main advantages of poppet valves are:

 

  1. Can operate with lubricant free air.
  2. Can operate with inferior quality air.
  3. Leak free.
  4. Low wear.
  5. High flow rates.
  6. Rapid response.

 

Disadvantages:

 

  1. Cannot be serviced.
  2. Not suited to reverse porting.
  3. Relatively high operating forces.
  4. Air loss during change over.

 

If you need more information about directional control valves, I recommend that you can visit the website of ASHUN.

 

Ashun Fluid Power Co., Ltd. is a well-known manufacturer of specializing in kinds of hydraulic valves and hydraulic cylinders. Learn more details about directional control valves, please feel free to check out Ashun’s product pages and send inquiry to them.

 

 

Article Source: https://somemmec.wordpress.com/2013/03/11/what-are-the-different-types-of-directional-control-valve-list-down-the-advantages-and-disadvantages-of-sliding-spool-and-poppet-valve-with-their-sketches/