Best Square Pipe Making Machine: Recommend Roll Forming Machines Manufacturer – Yunsing Industrial

Taiwan First Choice of Roll Forming Machine Supplier

Established in 1972, Yunsing Industrial Co., Ltd. hold “adhering to excellent quality and enhanced reliability to create outstanding customer satisfaction” as our business philosophy, Yunsing has accumulated more than 40 years of experience specializing in manufacturing steel plate automatic cold roll forming machines with advanced technologies and superior quality products, such as roofing and wall cladding, corrugated sheets, stepped tile roofing, floor decking, C-Purlin, rolling shutters and door frames.

 

Below, I will present you an excellent machine from Yunsing, that’s square pipe making machine.

 

Square Pipe Roll Forming Machine


YS-300 Square Pipe Making Machine complete with hydraulic cutting, including angular cutting, and punching hole devices by computer system.

 

Yunsing’s roll forming machines are driven by chain in hydraulic system. Chain Drive System can save the power compare with other system. That also means that customers do not need to pay the extra power fee during production of steel channel.

 

Features:

  • Without any welding
  • Using raw material is Galvanized coils, so the pipe inside is also galvanized
  • The length of the pipe is variable
  • All punching and cutting, inclduling angular cutting are automatic
  • Automatic stacker, so two workers can handle this production line

 

Certificate:

SGS; CE

 

Order Information:

  • Minimum Order: one set
  • Branded Product
  • FOB: Any port in Taiwan

 

If you need more information about square pipe making machine, please come and visit Yunsing Industrial Co., Ltd. for further details.

 

 

Yunsing Industrial Co., Ltd.

No, 472, Yen Ping N. Rd., Sec. 6, Taipei, Taiwan R.O.C

TEL: +886-2-28120007

FAX: +886-2-28131932

Email: info@yunsing.com.tw

How to Choose A CNC Engraver?

First of all, you have to pay attention to rigidity. Even the most nicely-looking engraver but with mediocre rigidity (e.g. twisted aluminum profiles) will not ensure proper operation. This can cause jagged edges, burrs, and clear traces of the tool vibration during operation. The machine cannot have sliding elements because they will quickly abrade and backlash will occur. So linear roller bearings and ball screw gears must be applied, which will allow the elimination of backlash.

 

As for the control system, engraving machines which communicate with a PC via serial or parallel ports have already gone out of date. For large works, in particular 3D ones, the file can reach tens of megabytes. Currently only Ethernet and technologies based on it come into play, which enables convenient operation of the machine with full visualization while working in real time.

 

A highly important thing is also the control software. Forget the printer driver which allows “printing” to the engraving machine. The engraving control software must generate the tool path itself (internal and external correction, concurrent and counter treatment, excavating pockets, excavating pockets with detection of islands, working on many stages of plunge cutting, cutting corners with an engraving cutter, etc.)

 

Well, and finally the speed – the fastest engraving machines reach the feed rate up to 1500mm/s, but the speed 150mm/s is good enough. Machines which reach speed not exceeding 50mm/s are toys.

 

If you have any interest in CNC engravers, please do not miss the website of Ares Machinery Co., Ltd. – the company specializes in a variety of tapping centers. Learn more details, welcome to contact Ares Machinery at 886-4-24925555.

 

 

Article Source: http://www.kimla.pl/en/HowtochooseaCNCengraver

PP Hollow Sheet Extrusion Line Manufacturer – Leader Extrusion Machinery

Leader Extrusion Machinery Company is the professional extruder machine manufacturer in the industry.

 

Leader Extrusion Machinery has more than 20 years’ experience designing and manufacturing plastic extrusion machinery. They are specializing in manufacturing of PP, PS, PVC, PC sheet extrusion lines and PP, PC PET hollow profile sheet extrusion lines.

 

To assure high quality and high precision products Leader Extrusion Machinery Company is equipped with sophisticated high tech production machinery and equipment. Furthermore, with the improvement of technology, plastic extrusion film and sheets have become everyday products. With lightweight, waterproof, durable and environmental features applications are unlimited!

 

Below, I will present you Leader Extrusion Machinery’s PP hollow sheet extrusion line.

 

Plastic Hollow Profile Sheet Extruder

PP Hollow Profile Sheet Extrusion Production Line

pp hollow sheet extrusion line

 

PP Hollow Sheet Extrusion Line is lightweight, impact and oil resistant, and waterproof. Applications include packaging containers, display panels, daily use items, stationery, and protective packaging for building materials. PP can be formed into any shape and type of product such as turnover boxes, component boxes and plastic partitions. This is excellent material widely used for protecting electronic parts.

 

If you want to get more specification about this PP hollow sheet extrusion line, please do not hesitate to check out the website of Leader Extrusion Machinery. You also can find a variety of extruder machines on their product catalog.

 

 

Leader Extrusion Machinery Ind. Co., Ltd.

No.235, Sec.1, Gangbu Rd., Wuqi Dist., Taichung City 43546, Taiwan.

Tel: 886-4-2638-0888

Fax: 886-4-2638-0333

E-mail: leadertw.ex@leadertw.com

Best Cooperation Partner for Batch Pre Expander – Tai Shyan Machinery

If you need EPP or EPS machines, Tai Shyan will be your best choice. Read this article to learn more information.

 

Taiwan EPS Machines Manufacturing Expert

 

Established in 1978, Tai Shyan Machinery Industrial Co., Ltd. specialized in whole machinery equipment and designs for EPS, EPP fully automatic molding machinery and essential accessories for machines.

 

With “Service and Development” as the business philosophy, Tai Shyan attaches importance to pre-sales, sales, and after-sales services, wish to be the trustworthy project partner of customers. As a professional EPS / EPP automation solution provider, Tai Shyan is just there for you.

 

Below, I will present you one of excellent Tai Shyan EPS machines – that’s a batch pre expander.

 

Batch Pre-Expander Machine I-II

TS500-1600

Batch Pre Expander

 

Features of Batch Pre Expander

  • The batch pre expander applies PLC and touch screen, automatic feeding, electronic weighting, temperature control, material level control to realize automatic production.

 

  • Electronic weighing system and material level control system assure the density of the foamed material, which make the granule uniformity and keep the density tolerance within ±2.5%.

 

  • With advanced proportional control valve, pressure reducing valve and totally closed foaming barrel can ensure the stability of temperature and pressure in cylinder.

 

  • The machine is equipped with fluidized drying bed; it can dry, crush and filter the foamed materials automatically.

 

  • Most components used in the machine are world famous brand with its reliable performance stable quality, long service life and low maintenance cost.

 

  • The computer has memory function, which can record all information such as brands, specifications, expanding foam techniques and parameters of EPS material manufacturers. When customers want to use the materials that had been used before just press the touch computer screen to quickly to back to the original technique.

 

If you want to get further details about specifications of this batch pre expander or other EPS machines, please do not hesitate to check out Tai Shyan Machinery product catalog and send inquiry to let them know your requirements.

 

 

Tai Shyan Machinery Industrial Co., Ltd.

No.398, Dawu St., North Dist., Tainan City 704, Taiwan (R.O.C.)

TEL: 886-6-2526325

Hot Line: 886-910280292

E-mail: taishyan@ms22.hinet.net

The Advantage of Using CNC Surface Grinder in Auto Parts Processing

Auto parts (auto spare parts) constitute the overall car of each unit and in the   service of automobile products. Auto part usually requires high precision and high reliability. Manufacturing of auto bearing parts with CNC surface grinder could gain the following advantages:

 

  1. High Precision: two parallel plane, through the disc, the swing arm type feeding NC vertical double end face grinding machine grinding, the precision of the products can reach 0.002 ~ 0.003 mm.

 

  1. High stiffness is the difference between two sides of the plane can control within 0.006 mm dimension consistency control ability.

 

  1. High Efficiency: disc, the swing arm type feeding CNC grinding machine, compared to its efficiency on the basis of the same precision grinding machine is more than 10 times.

 

  1. For many applications, grinding is the preferred process strictly because of the finish it provides. These machines handle the tight tolerances of tenths or millionths without a struggle. Extremely stable machines, they’re made for dealing with super tight tolerances.

 

  1. Temperature changes in and around a machine can create steady fluctuations in component sizes. Although these variations may seem minute, when tolerances are in tenths and millionths, they can spell the difference between a good part and scrap.

 

  1. Easy to Operate: vertical double end face grinding machine, CNC control convenient operation convenient operation compared with horizontal double end face grinding machine fixture design more reasonable, more scientific and more flexible.

 

  1. For successful hard turning, the key components for a machine are that it is rigid, thermally stable, the more can be integrated into the process and the more efficient the operation.

 

  1. Along with vibration stress release, these outstanding structural features assure high strength, maximum damping capability, and longer service life.

 

Just as streamline, CNC surface grinding machine is another very important   revolution in auto parts manufacturing. With these machines, manufactures can   produce both normal and special auto parts in large amount. That shorts the whole design and manufacturing processing of an auto part and also lowers the cost.

 

If you need more information about CNC surface grinders, I recommend a company to you – that’s Tong Yi Machinery Inc.

 

From manual shaping grinding machine, semi-automatic grinding machine, the full-automatic grinding machine of three axes, NC level grinding machine, NC level rotary grinding machine, any product was all researched and developed and designed high-accuracy towards pluralism and humanization, believe that can offer more perfect quality service for every customer. Get more details, please feel free to contact with Tong Yi Machinery.

 

Article Source: Quora

Transformer Winding Machines: Significance and Types

Transformer is one of the most crucial components of any electrical circuit. A transformer is basically used to convert (increase or decrease) the voltage, depending upon the maximum allowable voltage of an application. Thus, there are two main types of transformers, namely, step-up and step-down transformers. The main difference between these two types of transformers is the number of windings. Thus, winding becomes the most important part of this electrical device. These windings are manufactured with the help of transformer winding machines.

 

Transformers are used in a wide range of applications varying from a mobile charger to huge industries. Thus, the rating of the transformers can vary from VA to MVA. VA is the voltage and current rating of a transformer. Thus, based on the applications, transformers with different windings are used. There are different types of transformer winding machines used to manufacture transformers with different VA/MVA ratings. Besides this, different types of winding machines are required, depending upon low volume or high volume production. What are these machines? What is the significance of these machines in manufacturing winding? Are you intrigued to know more about them? Read the following post to get a detailed understanding of these machines.

 

What Are the Types of Transformer Winding Machines?

 

As discussed earlier, transformers with different VA ratings require different coil winding machines. Based on this, there are three main types of winding machines used. These three types of machines are as follows:

 

  1. Manual Transformer Winding Machines –

These transformer coil winding machines can either be operated by hand or with the help of a small motor. Transformer coils can be wound precisely by using the manual transformer winding machines. One of the major advantages of these machines is that they are light weight. This makes them portable and can be carried from one place to another easily.

 

  1. Programmable Transformer Winding Machines –

The programmable transformer coil winding machines are an advanced version of winding machines, which feature a 16 Bit microprocessor for smart operation. These machines also have a stepper motor, which is capable of winding up to 750 RPM. In these machines, various functions of a transformer are set-up and programmed. This is one of the biggest advantages of these machines, as programming these functions provides high level of precision in operation. Thus, coils of transformer can be wound easily. Some striking features of this achiness are:

 

  • They have a built-in production counter, which keeps an eye on the number of transformer coil winding.
  • There are a number of menu items, which can be programmed easily.
  • These winding machines are equipped with a speed control knob. This helps adjust the speed.
  • Another important and beneficial feature of these transformer winding machines is that they have a display.

 

  1. Automatic Transformer Winding Machines –

As their name suggests, the automatic transformer winding machines do their job with no or very less need of human interference. The advantage of using these types of winding machines is that they help reduce the labor costs. Various tasks can be fed to these machines, and they are operated using computerized programs. The multi-spindle feature of these machines help to make the equipment multi-coil winding. Multiple coil windings can be done simultaneously using these types of machines.

 

These were the three basic types of transformer winding machines used by a number of manufacturing firms. If you want to get more information about transformer coil winding machine, try to check out the website of DETZO Co., Ltd. – the company specializes in producing fully automated production line and winding machines. Learn more details please do not hesitate to visit DETZO immediately.

 

 

Article Source: https://www.armaturecoil.com/blog/transformer-winding-machines-their-significance-and-types/

How to Increase the Process Speed of Die Sinking EDM

Developments in the EDM process and its technology along with improvements in accuracy, automation and micro-mold making technology can pay enormous dividends to the domestic mold making industry.

 

Speed Is Not the Solution

Increasing drive speed is one solution to improving the speed of die sinking EDM. In this way the unproductive times for lifting movements are reduced; however, the gain in speed is limited to small electrodes and very deep cavities. In addition, above a certain speed the electrode wear is considerable and very high axis speeds result in extreme strain on the mechanism, make the machine more expensive and shorten its working life. Therefore, it is wrong to believe that a general increase in the process speed is only to be achieved by rapid lifting movements. The contribution of fast axes to the machining process is just one supplementary aspect to a complex interaction that encompasses the generator, process control, gap width regulation and the mechanism. And die sinking EDM requires intelligent flushing.

 

Potential Lies in the Flushing

You can imagine the EDM process as being a balance between the EDMed and evacuated material in the gap. If this balance is not present, then either you flush the machining area unnecessarily—involving a loss of time and additional instability of the process—or you EDM the same particles several times, which cannot be removed from the gap sufficiently.

 

Die Sinking EDM

Before the material can be evacuated from the gap you must remove it from the workpiece. So how can you achieve more removal? As in the case of all optimization problems, the greatest gain potential lies where the efficiency is smallest. The efficiency of a single discharge with a cathodic poled workpiece is theoretically about 25 percent.1 In addition there are some factors that make the efficiency even worse (e.g., process control problems, non-ideal flushing conditions, small gap width), so that realistically you must reckon with an efficiency of less than 10 percent.

 

Removal and Surface Quality Determine the Time Requirement

In the case of EDM, the objective is always to optimize the removal performance of the machining on one hand, and to achieve the surface quality of the workpiece to be machined on the other hand. The workpiece, when machined, is intended to display a certain final roughness and a certain form precision. In addition, two conditions are called for:

 

  1. As small a thermally influenced area of the workpiece surface as possible
  2. As low an electrode wear as possible.

 

These marginal conditions determine the machining time and costs for workpiece production. In practice, a sequence of technological parameters is used because starting out from the roughing to finishing settings, the pulse energy is gradually reduced until the required technological results are achieved. Once again the law of nature applies: you can quickly achieve results of modest quality, but only slowly results in high quality.

 

Physical Processes Show a Solution

The approach toward an ideal state means moving the characteristic curve in the direction of the arrow. That means faster EDM with the same gap width, roughness and wear. If, up to now, the discharge energy of the EDM pulses was increased, regrettably you also only had greater roughness and a greater gap width so that the gains in speed during roughing were lost again through longer finishing. You will find a way to a solution if you return to the basics of EDM theory—to the physical processes leading to the formation of the spark and metal removal.

 

During the discharge, you can identify three main physical phases in succession:

 

  1. The Build-Up
  2. Discharge
  3. Fade Phases

 

In the first phase the discharge canal is built up. After passing through the working medium, the current flows almost exclusively on the surface area of the discharge canal and the anode is partially evaporated by the electron bombardment. The electrode wear mainly takes place here. Every pulse—whether contributing intensively to removal or not— causes microscopic wear. In the discharge phase, the electrical energy supplied causes melting or evaporation of material mainly on the workpiece. The fade phase begins with the switching off of the power supply. The plasma canal collapses and the partially evaporated, partially liquid material is ejected.

 

When to Interrupt Pulses

During the discharge, a crater forms in the workpiece. Fundamental studies of discharges have shown that the growth of the crater in the workpiece stagnates from a certain time. This is because a balance forms between the energy supplied and the energy lost, as well as energy that is used for the maintenance of the plasma and the heat loss to the workpiece and dielectric. This asymptote of the crater growth can be recorded in real time from the spark voltage and current.

 

However, why is the asymptote of the crater growth so important? Because this is the right moment to interrupt the pulse. It is unnecessary to let a pulse last longer if the target radius of the crater and the required roughness have been achieved. You can begin with the next pulse immediately. The time required by the pulse to reach this state also is not constant, as the speed with which a discharge reaches a certain spark base diameter depends on the macroscopic situation in the gap and the local geometry in the spark discharge area. With this first measure alone, you will optimize the number of discharges per unit of time and increase the removal rate.

 

When to Increase the Current

If you now observe the charge’s fade phase you will see that the removal from the workpiece is caused by the collapse of the plasma canal. The sudden drop in pressure—triggered by switching off the power—causes the evaporation and ejection of superheated material. The plasma canal has a very high temperature and pressure. The gradient of its collapse influences material removal. The more abruptly the energy disappears, the better the crater material will be ejected. In order to enhance this effect, a special trick is employed: before the pulse is interrupted, the current is increased briefly. The idea of increasing the pulse current is not new, the innovation is the definition of the point in time when this increase is to take place. The increase in the pulse current has no consequences for the roughness, wear or gap width, but does increase the removal. In addition, as the removal per pulse is greater, you need fewer pulses for the machining, and therefore the wear sinks.

 

Removal Rate Doubles in Part

This new machining strategy (asymptote detection, current increase and pulse interrupt) is the subject of a patent application for its use in new EDM die sinking systems. The results are in accordance with the theoretical reflections, especially where good flushing is guaranteed (e.g., pre-machined workpieces). For these machining jobs removal rates have doubled.

 

Generator Brings Striking Improvements in Performance

The innovative generator offers an increase in productivity of approximately 30 percent; however, up to 100 percent with pre-milled molds that occur increasingly nowadays through synergies with HSM. This refers to all roughing and finishing using copper and graphite electrodes. The advantages are particularly great with good flushing conditions and pre-milled workpieces. These convincing results explain that it is possible to increase the speed and productivity of die sinking EDM, and the potential for improving this technology is still considerable.

 

If you need more information about die sinking EDM, please try to visit the website of Excetek Technologies Co., Ltd. – the company is the well-known brand for its EDM machines. Get more details about Excetek, welcome to check out their product pages and feel free to send inquiry to them.

 

Article Source: MoldMaking Technology

Five Reasons to Use an Automatic Liquid Filling Machine

Automation in the packaging process creates many benefits for the packaging company. Here we will analyze individual pieces of packaging equipment and explain some of these benefits.

 

The automatic liquid filling machine moves product from a holding tank to the waiting bottles or other containers without the need for operator interaction during each fill cycle.  In automating the filling process, a company can expect to improve the packaging operation in a number of ways, including, but not limited to, the following.

 

  1. Consistent and Reliable Fills

 

Using automatic filler removes the uncertainty from the filling process. Whether looking for a level fill, a highly accurate volumetric fill or using some other specific criteria, the automatic machine ensures that each cycle is completed in the same manner. Consistency and reliability that simply cannot be had by hand filling bottles or containers is easily achievable with the right machine for each project.

 

  1. Speed

 

Once production demand reaches a certain level, it simply becomes unrealistic to hire manual labor to complete each bottle fill. Probably the most obvious benefit of using automatic packaging machinery is the ability of the machinery to increase speeds. Using power conveyors and multiple fill heads along with the proper filling principle allows production to not only run faster, but run constantly.

 

  1. Versatility

 

Many companies use multiple bottles for a single product. A number of companies also run multiple products. In most cases, single liquid filler can be manufactured to handle all bottles and products packaged by a company. Some machines will use simple adjustments to change from one bottle or product to another, while others might require a little more time on changeover where bottle sizes or product viscosity varies greatly from one to another.

 

  1. Ease of Use

 

Almost all automatic filling machinery will come equipped with a PLC and easy to use operator interface. The interface uses a touchscreen that allows the operator to enter the various times and amounts necessary to complete each cycle. Once the numbers are entered, a recipe screen will allow the same to be retained. Eventually, the operator will simply need to enter the recipe number on the interface, make any physical adjustments (conveyor rails, fill head height, etc.) and then monitor the machine as it goes to work.

 

  1. Growth Potential

 

Automatic packaging machines can and should be manufactured with the future in mind. In other words, the machine should not be manufactured to immediately meet maximum capacity. At LPS, we build our equipment expecting our customers to experience growth! Simple additions to filling machines, such as extra fill heads, allow the equipment to grow with the business.

 

While there are other benefits to automating the filling process from project to project, a packager can always expect to receive those noted above.

 

Get more details about automatic liquid filling machine, welcome to visit SHIN I Machinery Works – the company is always your best cooperation partner for packaging equipment machinery.

 

 

Article Source: https://www.liquidpackagingsolution.com/news/five-reasons-to-use-an-automatic-liquid-filling-machine

Stretch Film vs. Shrink Film, What’s the Difference?

It’s a common misconception that people believe stretch film and shrink film are the same thing. It’s true that both shrink and stretch films are designed to unitize products onto pallets and both are generally made from polyethylene resins. Shrink films are produced on blown film lines and stretch films can be produced on either blown or cast film lines. Outside of those similarities, the two packaging systems don’t have a lot of other common characteristics.

 

Shrink films contain a high percentage of low density polyethylene (LDPE), which is the same type of resin used to make bread bags and newspaper overwrap sleeves.  When fabricated under very specific parameters, LDPE gives shrink film its “shrink”.  The stress or tension required to make the film contract is frozen in during the fabrication process. To activate shrink film, a heat source is required such as a heat tunnel, heat gun, or torch. When sufficient heat is applied to the film, it approaches its melting point and the film begins to draw up or “shrink”. Because the film can only shrink so far, each product to be wrapped has to be matched with a specific size and configuration of film. As film resins go, LDPE does not have good puncture or tear resistance and has a relatively low load holding force. In order to provide sufficient load containment and protection for the load, these films are generally several times thicker than most stretch films.

 

In contrast, most stretch films contain high levels of linear low density polyethylene (LLDPE) and, depending on the end-use application, can stretch from 25 to 300%.  Stretch films are either designed to be applied by hand or by machine. Hand films usually have minimal stretch (25-100%) in order to aid the operator in applying the product and are in many ways similar to a large roll of very thin tape. Machine films on the other hand can have very high stretch levels (150 -300%) and, because they are applied by automated equipment, can be configured to exert very high levels of tension on a load if desired.

 

Shrink films are good for applications where the object to be protected requires five-sided protection (top and four sides) or is very large (boats and industrial equipment). For five-sided protection on finished products such as washer/dryers, refrigerators and other appliances, along with bagged resins and cement/concrete, stretch hooders have started replacing shrink films as the older shrink tunnels are decommissioned and new, more energy efficient equipment takes its place.

 

If you have any interest in shrink film machine, I recommend that you can visit the website of Jumbo Steel Machinery Co., Ltd.

 

For over 25 years, Jumbo Steel has dedicated itself to the research of production technology for PVC shrinkable film. The company has made great improvements in product prescription and machine performance, upgrading the quality and efficiency of PVC shrinkable films. Jumbo Steel PVC shrink film machine has been sold worldwide, and has earned a reputation for its superior machine and outstanding production know-how. Get more details please do not hesitate to send inquiry or contact with Jumbo Steel immediately.

 

 

Article Source: http://www.paragon-u.com/bid/252257/Stretch-Film-vs-Shrink-Film-What-s-the-Difference

Buying a Five-Axis: Selecting the Right Machine

Horizontal or vertical? Trunnion or swivel head? What’s the effective difference between different configurations of five-axis machining centers?

 

Not all 5 axis machining centers are alike. Here’s where the application for which they will be used must be considered. You need to know what cutting speeds you’re going to run, for example. The type of spindle, the arrangement of rotary axes, rapid traverse rates, feed rates and available horsepower are other major considerations. Do you intend to machine primarily aluminum, stainless steel or titanium? How rigid does the machine need to be? What surface-finish quality do you require? What part accuracy are you trying to achieve? These are all questions you’ll need to answer in order to select the right machine for your application.

 

If you’re primarily machining aluminum, you may prefer a spindle capable of higher speed, such as 20,000 rpm, with higher rapid traverse rates, especially if you’re using smaller-diameter tools. Likewise, if you’re machining stainless or alloy steel for complex mold surfaces, you will likely be using small tools and high spindle speeds to achieve exceptionally smooth surface finishes.

 

Be aware that some machines are designed for cutting only aluminum. Others are suitable for steel and tough alloys, which require more rigidity, higher horsepower, lower spindle speeds, slower rotary speeds, higher torque and stronger box ways to make deep cuts with bigger tools. Machining different grades of steel, titanium alloys or even harder materials may require a heftier machine; however, this hefty machine would need to rotate the table excessively fast to achieve adequate surface speeds for cutting aluminum. The result might be disappointing.

 

When specifying out a five axis machining center, obtaining the expert advice of an experienced engineer is recommended.

 

Horizontal or Vertical

Horizontal five-axis machines are normally equipped with an automatic pallet changer (APC) ready to be installed on the shop floor. If you’re machining aerospace components that have deep pockets or waffling designed to reduce finished-part weight, the high volume of chips will naturally drop into the conveyor. In addition, horizontal five-axis machines tend to be heavier and more rigid, which helps when cutting steel and titanium.

 

In contrast, vertical five-axis machines tend to be more agile for processing smaller parts. VMCs tend to enable better operator access and can often take heavier cuts, but clearing chips can be inconvenient. High-pressure, through-the-spindle coolant delivery comes in handy to remedy chip accumulation.

 

Swiveling-Head or Trunnion Style

There are pros and cons to different types of machine designs. If you’re loading heavy parts, the non-tilting table on a swiveling-head machine is often preferred, because this type of table offers greater rigidity for holding big, heavy parts. The swiveling head enables the use of shorter, standard tooling, because all tool rotations occur above the part. Swiveling-head machines tend to be more versatile, lending themselves to using multiple fixtures, vises or tombstones. This somewhat simulates the appeal of an HMC.

 

A trunnion-style machine is often preferred in moldmaking, because both rotary axes are contained in the trunnion table itself and the spindle head is stationary. This configuration is similar to that of the three- or four-axis machines most moldmakers are already used to. The spindle head reaches out over the tilting table, providing better undercut capabilities and some access to the underside of the part. As the spindle head itself does not rotate, trunnion-style machines tend to be more effective in heavy chip removal and can use full X, Y and Z travels to accommodate large parts.

 

If you need more information about 5 axis machining center, please do not miss Vision Wide Tech Co., Ltd. – the company is the professional CNC machine tool manufacturer owning brand “VISION WIDE”, provides wide range products from heavy cutting to high speed, from 3-axis spindle to 5-axis spindle, and from metal cutting to composite material machining centers which have been applied in vehicles manufacture, power generating, aerial components and so on. Widely applied in curve-based polyhedral machining. Learn more details, welcome to visit Vision Wide immediately.

 

Article Source: Modern Machine Shop