8 Preventable Causes of AC Compressor Failure

There are any numbers of issues that can cause your air conditioner to stop working. Luckily, they’re not all expensive fixes. The problem could be just a loose wire that’s caused a power failure in your air conditioner. Or you could have a clogged air filter that’s impeding the air flow to the system.

 

On the other hand, when AC compressor failure causes your system to breakdown, you have a major AC emergency service problem and a big expense on your hands. The compressor is a vital and expensive component, and when it goes you may find yourself dropping a lot of cash on a new AC unit.

 

The good news is, as much as 80 percent of the causes of AC compressor failure are preventable if the problems leading to the failure are corrected in a timely manner. These problems can be detected and eliminated during regular AC preventative maintenance.

 

What Is The Compressor?

Your air conditioner’s compressor is often called the heart of the system. This is a good analogy for a few reasons:

 

  • It’s one of the key components without which the system can’t function.
  • It’s usually very reliable, and if it’s failed before its expected life span (10 to 15 years), it’s probably due to an underlying cause that’s often preventable.
  • It does fail, it’s expensive and sometimes impossible to fix it.
  • Like your heart pumps blood through your body, the compressor’s job is to compress the refrigerant gas (hence the name) and pump it through the system so that it can remove heat and humidity from the air.

 

Now that you understand why it’s so critical to keep your compressor in good shape, let’s take a look at some of the things that can cause AC compressor failure and what you can do to avoid them.

 

Problems That Cause AC Compressor Failure

When AC compressor failure happens, it’s often due to an underlying issue that causes stress on the system. That’s important to know for two reasons:

 

  • By detecting and fixing the underlying cause, you’ll prevent AC compressor failure
  • If you replace a failed compressor without fixing the underlying cause, the new compressor is likely to fail as well.

 

These are the common issues that cause AC compressor failure:

 

  1. Dirty Coils.

When dust, grime and mineral scales build up on the condenser coil, the air conditioner can’t expel enough heat from the system and it’s forced to run constantly trying to cool your space. The increased pressure and temperature can cause the compressor to overheat and fail.

 

  1. Blocked Suction Lines.

When your air conditioner’s refrigerant lines become blocked or damaged, the first thing you’ll notice is that the unit is not cooling as effectively. If the problem is not fixed, once again the increased pressure and temperature cause overheating and AC compressor failure.

 

  1. Low Refrigerant Charge.

If your system’s refrigerant lines develop holes or cracks, the air conditioner leaks refrigerant. After a while, the level becomes so low that the compressor has to work harder to pump enough refrigerant through the system to cool your space. The strain can eventually cause the compressor to break down.

 

  1. Incorrect Suction Line Size.

If your refrigerant line develops leaks and needs to be replaced, make sure you get an experienced AC technician to do the job. A line that’s too large or too small for your system can cause premature AC compressor failure.

 

  1. Too Much Refrigerant.

If a less-than-qualified person works on your air conditioner and inadvertently adds too much refrigerant, or even the wrong type of refrigerant, it can be a deadly mistake for the compressor.

 

  1. Electrical Problems.

An electrical failure can result in a buildup of acids that cause a great deal of damage to other parts in addition to the compressor. If you have a failed compressor, make sure the technician tests for the presence of these acids. If he finds them, an electrical burnout has caused damage throughout the system that is probably not worth fixing.

 

But electrical problems are often easily preventable when an experienced tech inspects your system: he can spot and repair damaged wiring, fuses and contractors before they take down your system and cause AC compressor failure.

 

  1. Contaminants in The System.

The high heat and pressure in an air conditioning system, not to mention the locations where they are typically housed in New York City (outdoors, on rooftops, in crawl spaces) can introduce any number of contaminants that can cause damage. These include air, moisture, dirt, debris, leaves, soot, acids, and even bird and pest droppings.

 

  1. Inadequate Oil Lubricant.

To take the heart comparison a step further, think of your air conditioner’s oil lubricant like the blood in your body. If there’s not enough, the system can’t work properly and all kinds of problems can result, including AC compressor failure. When your system is regularly maintained by a trained AC professional, he will check the lubricant levels and the condition of the oil pump to prevent this problem.

 

Take good care of your compressor with regular AC preventative maintenance

When you take good care of your compressor, it will take good care of the air in your space with consistent, reliable cooling. That means having your air conditioning system serviced at least twice a year by a reputable AC service company.

 

About this service, I recommend an industry recognized leading AC Compressor developer and manufacturer to you – Rebeck Enterprise Co., Ltd.

 

The objective of Rebeck is to develop and manufacture AC compressors in consistent high quality to meet and even exceed customer’s requirements. To deliver quick response to customers’ requests and comments; the marketing and after-sales teams always provide free flow communication with customers. Rebeck welcomes all your standard and customized requests about the AC compressor.

 

To get more detail of AC compressors, please do not hesitate to contact with Rebeck right now!

 

Article Source: https://aristair.com/blog/8-preventable-causes-of-ac-compressor-failure/

Plastic Injection Molding Industry Trends in 2018

According to Global Market Insights Inc., the plastic injection molding industry is one of the “most dynamically evolving businesses in recent times”. The application of plastic injection molding can be found in various industries such as medical, aerospace, automotive, packaging, household appliances, and construction.

 

Wondering how plastic injection molding works? Let us have a brief look at the overall process. Plastic is melted in the plastic injection molding machine and then injected into a mold under high pressure. The material is then cooled, solidified and released by opening the two halves of the mold. This technique results in a plastic product that has a predetermined and a fixed form.

 

Given the importance of injection molding to the plastics industry as a whole, it is very important to keep up on the most recent trends. Let us take a look at trends in the injection molding industry.

 

Replacing Metal Parts with Plastics

 

Plastic offer numerous advantages when compared to their metal counterparts such as:

 

  • Lightweight
  • Cost-effective
  • Durability
  • Corrosion resistant
  • Reusability

 

Due to the benefits that plastics offer, many businesses in the injection molding industry are now replacing metal parts with plastics. The companies that are able to identify niche markets where metal can be replaced with plastics will be well positioned in the market for 2019.

 

Product Design for Ease of Manufacture

 

Integrated product design and manufacturing can increase product quality and decrease production costs. Design teams are now working directly with manufacturers throughout the design process. This allows them to design parts that can be manufactured cheaply with a low defect rate and a high degree of efficiency.

 

Precision Molding

 

Precision molding is the current trend used to address manufacturing challenges. It allows engineers to quickly address production issues using advanced tools that help to –

 

  • Simulate mold flow
  • Monitor the injection process
  • Make changes to the process in real-time
  • Send alerts during a malfunction

 

Computer-Aided Mold Design

 

With the help of computer-aided mold design, companies can design highly effective and reliable molds resulting in a reduced need for design modifications. They offer numerous benefits such as

 

  • Accurate than hand-drawn designs.
  • Reduces human error.
  • Modify existing ideas and save time.
  • Automate the manufacturing process.

 

Sustainability & Energy Efficiency

 

Due to the rising energy costs combined with an increased corporate interest in sustainability, companies are now focused on being more energy efficient. They are doing this by incorporating plastics in their operations. Plastics are extremely durable and increase the overall functionality of products. They also help in reducing transport weight and fuel consumption, making them environment-friendly and cost-effective.

 

These trends will help plastic injection molding will continue to play a vital role in the development of products that serve a plethora of industries. We hope the trends mentioned above, provide you with valuable insights and help you in making smart decisions for your business in the year 2.

 

By the way, if you have requirement of high-quality plastic injection moulding machine, I recommend you to visit Multiplas Enginery Co., Ltd. – they can provide kinds of injection moulding machines to meet your needs. Learn more information, please do not hesitate to contact with Multiplas!

 

Article Source: http://plastivision.org/blog/plastic-injection-molding-industry-trends-in-2018/

Benefits of Using Automatic Lathes

No matter their size, CNC lathes are designed to make intricate cuts on different types of material, specifically wood, plastic, and metal—making CNC machines key players in glassworking, metal spinning, metalworking, and wood turning. These machines can be used to produce anything from plane surfaces and screw threads to three-dimensional, complex products. And, because they’re easily set up and operated, CNC lathes are a growing necessity for companies of any size and production level.

These machines offer tremendous repeat-ability, top-notch accuracy, versatile functionality, and customized programming, making CNC lathes the perfect solution for the following industries: automotive, electronics, aerospace, firearm manufacturing, sporting and many others.

Your overall productivity depends on the efficiency of the tools you use, period. Ineffective equals slow. Slow equals less profit. In order to fulfill your work orders and gain higher production levels, you need to have the right machine, and that machine needs to be in the highest condition to perform.

Article Source: https://asimachinetool.com/blog/benefits-of-using-cnc-lathes/

Why Choose A CNC High Precision Grinding Machine?

If you’re working on complex workpieces that normal centerless grinding machines can’t handle, CNC high precision grinding machines may be the best choice for your company.

 

CNC high precision grinding machines come in two types: cylindrical grinding machines and surface grinding machines. These devices perform a final, ultra-precise grinding stage that removes material to as little as 200 nm per pass. Also, at such rates of material removal (200nm/pass), there is only negligible heat generation – even without applying coolant. This makes it rare for the metallurgical characteristics of the workpiece to be affected.

 

In addition, CNC high precision grinding machines make it easy to machine components with intricate internal features. You won’t have to use several machines to carry out the external grinding and the internal grinding. One machine is enough to do both.

 

Also, due to the high precision of the machined parts, there’s a better consistency of what’s produced. Again, the entire grinding process is computer controlled with no human input that could lead to errors. Once the settings are made, every part is machined with exact dimensional accuracy.

 

CNC high precision grinding machines can be used on a wide variety of materials including steel, hardened aluminum, brass, plated aluminum, bronze, powdered metals, tungsten carbide, plastics, and titanium alloy. CNC high precision grinding machines are also the best choice for use in machining bearings, bushings, valves, shafts, pistons, sleeves, industrial nozzles, and industrial needles. These types of parts all require very high precision in both dimensional accuracy and surface finish.

 

If you need more information of high precision grinding machines, I recommend you to visit SIGMA CNC Technology Machinery Co., Ltd. – they are the professional manufacturer of specializing in grinding machines and machining centers. Now, check out their website and feel free to contact with SIGMA for more details!

 

Article Source: https://www.maxgrind.com/cnc-high-precision-grinding-machine/

New to Carton Closing Stapler? Here’s What You Need to Know to Get Started.

The following will help you identify the best carton closing stapler and carton closing staples to staple the tops and bottoms of boxes.

 

First, Let’s Talk Staplers.

 

Carton closing staplers for top and bottom box closure come in two styles.

 

  • “Stick” or “Strip” – good for low and medium volume carton closing stapling applications.
  • Coil Staples – good for medium and high volume carton stapling applications.

 

Like most staples, carton closing staples have three important measurements that make up the overall dimensions of the staple:

 

  • Crown Width: This is the wire along the top that connects the 2 legs. Common carton closing staple crown dimensions used to close the bottoms and tops of boxes include: 1-3/8” wide crown (or “A” crown) and 1-1/4” wide crown (or “C” crown).
  • Leg Length: The two wires that come down from each end of the crown wire make up the legs of the staple. Common carton closing staple leg lengths used to close the bottoms and tops of boxes include: 1/2”, 5/8”, 3/4”, 7/8”, and 1-1/2”.
  • Wire Dimensions: Fastener wire is either flat or round. Carton closing staples are made of flat wire that has two dimensions.  For example, the wire dimensions of the Bostitch SW74375/8 staple are .074” x .037”.  You will notice that these dimensions make up a portion of the nomenclature of the part number.

 

Tip! – The wider the crown and the thicker the staple wire, the more secure the fastener will be.

 

Which Stapler Is The Best Stapler For Your Particular Carton Closing Application?

 

The guidelines stand pretty true for most top and bottom box stapling applications using a box with standard “C” flute corrugated board.

 

  • Single wall corrugated: 1/2”, 5/8”, and 3/4” leg lengths
  • Double wall corrugated: 3/4” and 7/8” leg lengths
  • Triple wall corrugated: 7/8” and 1-1/2” leg lengths depending on the application

 

Where to Buy Carton Stapler?

About this question, I recommend you to visit Apach Industrial Co., Ltd. – they offer a wide range of top quality Carton Stapler products. When you need to securely close a box, corrugated container, carton or any commercial packaging for shipping, you can choice their Carton Closing Stapler product. A good Carton Stapler can ensure fast and secure lid closing well. Hope you would like Apach’s products.

 

Article Source: THE R.V. EVANS COMPANY

The Advantages of Non-Woven Bags

The downside’s of using plastic bags are well documented and widely known. These solid waste items and pollutants sit in landfills and waste sites as well as clogging drains and filling the oceans. Companies and individuals are, more than ever, inclined to go back to using the good old recyclable paper bag. But did you know that the recycling process of paper can only be implemented about 3 times? A lot of paper bags aren’t reusable either so the recycling process goes on and on. Ultimately the bags are still made by chopping down trees which threatens the planets future air quality.

 

Woven bags are reusable and recyclable but they are more labor intensive and it takes more energy to create them. This means that they’re not the most ecologically friendly bags available to you. Instead, opt for non woven bags. First manufactured in China, they’re made from spun bond non woven polypropylene (PP) cloth. The material looks and feels like cloth, but it doesn’t need to be woven – making it a more economically sound option. To follow are the main benefits of using this material:

 

  • 100% recyclable
  • Bio-degradable and can burn without toxic contaminants
  • No PVC coating or water used in manufacturing process
  • Greater durability means they are more reusable
  • Screen printing and heat transfer full color printing available
  • Competitive pricing
  • Lightweight
  • Strong
  • Packable or foldable
  • Liquid repellent
  • Washable
  • Air permeable

 

Non-woven bags are now being used by a variety of businesses: grocers, department stores, gifts shops, off licenses, promotional companies, and many more. Non woven carriers are the most environmentally friendly and the most versatile and practical bags in the market place today.

 

If you have requirements of non-woven bags, I recommend you to contact with May Sun Jieh Enterprise Co., Ltd. – they are the professional paper bags and non woven bags supplier in Taiwan. Now, check out their website and contact them for more details!

 

Article Source: https://www.paperbagco.co.uk/blog/the-advantages-of-non woven-bags

Power Factor Regulator: How Does It Work?

The power factor regulator combines comprehensive operations with user-friendly control settings. It uses numerical techniques to compute the phase difference between the fundamentals of current and voltage, enabling precise power factor measurement even in the presence of harmonics.

 

The power factor regulator is designed to optimize the control of reactive power compensation. Reactive power compensation is achieved by measuring continuously the reactive power of the system and then compensated by the switching of capacitor banks. The sensitivity setting optimizes the switching speed. With the built in intelligent automatic switching program, the power factor regulator further improves the switching efficiency by reducing the number of switching operations required to achieve the desired power factor.

 

Usage of the capacitor bank is evenly distributed by the intelligent switching algorithm. This ensures uniform ageing of the capacitors and the contactors used.

 

The four-quadrant operation feature allows the power factor regulator to operate correctly in the case of active power feed back to the mains where regenerative power sources are used.

 

Harmonic current in the system can be harmful to the capacitor bank. This power factor regulator is capable of measuring the total harmonic distortion (THD) in the system and produces an alarm if the THD level is higher than the pre-set value. Other alarms include under/over compensate alarm, under/over current alarm and under/over voltage alarm.

 

Current transformer (CT) polarity is important in determining the correct phase angle different between the current and voltage hence the power factor. This power factor regulator will automatically correct the CT polarity internally in the event that the

Polarity is reversed.

 

If you want to learn more information of power factor regulator, visit Yuhchang Electric Co., Ltd. that will be a great choice! They are the professional manufacturer of specializing in kinds of power capacitors. To buy ideal power factor regulators, welcome to check out their website and feel free to contact with Yuhchang for more details.

 

Article Source: www.itmikro.com.my

Which Pump Will Work With Your Portable Hydraulic System?

Portable hydraulic pumps are taking over more tasks that would otherwise require dangerous and strenuous human labour. These time and back-saving devices make significantly lighter work of a plethora of plant maintenance chores such as lifting equipment, tightening and loosening bolts, spreading flanges, and cutting corroded nuts. As powerful as these tools are, using the right pump is crucial to ensuring safety and efficiency on the job.

 

Because of the vast spectrum of capabilities and functions of portable hydraulic pumps, several factors should be taken into account when determining the appropriate power source. Hydraulic tool users can choose from three primary power sources: hand, electric, or air. Each method offers unique benefits relative to a wide range of situations.

 

Hand Pumps

A hydraulic hand-powered pump is usually the simplest and most economical type of pump to use. It is ideal for sporadic use of small or medium-sized hydraulic tools and is especially suitable for use in remote locations where other reliable power sources cannot be secured. In some potentially hazardous cases, a manually powered pump could be the only viable option as it does not require a source of power that could ignite.

 

Hand-operated pumps are available in sizes ranging from smaller single-speed devices weighing less than 5 kg to larger metal two-speed models weighing almost 45 kg. These pumps can come with oil capacities of up to eight litres and valving for either single or double-acting tools. The proper hand pump will meet requirements for system oil capacity, fluid compatibility, and valving type. Duty cycle is not a major issue because a hand pump is normally used for short one-time tasks.

 

The primary drawback with hand-powered pumps is its reliance on manual effort: its use is limited to the physical ability of its operator. Additionally, since one hand must be used to work the pump, the operator must sacrifice convenience and efficiency. Although hand-powered pumps are quite portable, they may not be operative in cramped locations, such as on ladders or catwalks, where operators may not be able to generate enough power. Further, these types of pumps require a flat surface for operating.

 

Electric Pumps

Electric pumps are the most common high-pressure pumps used after hand-powered pumps. Electric units come with versatile options of motor types, heat exchangers, valves and actuators, and operating voltages. The abundance of variations makes it challenging to choose the correct pump in this category.

 

While the major factors in selecting a pump are size, voltage, reservoir capacity, and valving, the additional aspects of electric motor and the necessary duty cycle are critical in choosing the best electric pump. Duty cycle is the time frame in which the pump will run at a particular percentage of full loads. Most high-pressure pumps are not suitable for higher duty cycles. Tasks that necessitate pressures over 5,000 psi for over an hour require pumps with coolers to regulate oil temperatures at a safe level of 65C (150F) or less. Electric motors are either induction or universal. The application determines the proper selection of either.

 

Induction motors operate for longer periods of time with greater durability. They perform at reduced noise levels, which is a significant benefit for jobs in restricted spaces. Induction motors are usually heavier, which explains why they are more commonly used in areas where a stationary, high-production pump is needed. An induction motor requires a highly stable electrical power source. A reduction in line voltage — even as small as 10 percent — could cause extensive damage to the motor. Using this kind of pump is not advisable for settings where electricity is sourced by a generator with an extension cord.

 

A universal motor pump may be ideal for situations that require the performance and speed of an electric pump and flexibility with portability and power sources. These motors are lighter than induction motors, provide more power in proportion to weight, and can function with less stable electrical power. If necessary, universal motors can run full torque on half of terminal rated voltage.

 

Air Pumps

Like a hand-powered pump, an air pump is relatively easy to use, portable and lightweight. Air pumps are available in many different sizes. They offer greater performance capabilities relative to hand-operated pumps. Another advantage is that they can be safely used in a location where an electrical current could be hazardous, provided that the pump is positioned at a sufficient distance from a compressor.

 

Reciprocating pumps are more popular than other air pumps, offering greater performance at lower cost. Usually, they are single-speed models that provide high flows at lower pressure since it can operate faster under diminished loads. However, a dual reciprocating air-powered pump is available for situations where high flow is necessary. With this design, the high-flow unit can stall at high pressure without an unloading valve.

 

A rotary air pump is ideal for higher performance needs. This type of pumps utilizes a rotary air motor which drives an ordinary hydraulic pump. However, rotary air pumps are typically noiser, heavier, and need more air than reciprocating pumps.

 

Sufficient air supply is the most critical factor to consider when choosing either air pump style. All air-powered pumps require a certain air flow rate to perform at their maximum level. If the airflow rate cannot be determined beforehand, a common standard is that each horsepower at the compressor will supply five scfm (approximately 142 litres).

 

Air pumps are suitable for operation in environments where pneumatic lines have been installed and are easily accessible. However, air pumps are typically more costly to use relative to electric pumps as compressed air tends to power tools less efficiently.

 

Guidelines for Pump Selection

 

  • Determine proper ratings for maximum operating pressure, oil capacity, flow rate, cycle frequency and duration, and valving.
  • Analyze cost factors including impact on productivity and manpower.
  • Research ergonomic and safety features. Weight, dimensions and portability must be considered to help determine the level of dexterity and strength the operator will need. Noise levels should be as low as possible.
  • Know the power source requirements. The power that is safely available often determines what pump is best to use.
  • Ensure that tool speed matches pump size needed. Power requirements increase exponentially with pump size. The ideal pump matches the necessary speed without superseding it.

 

If you need more information of portable hydraulic pump or other hydraulic pumps, I recommend you to visit YEOSHE Hydraulics Technology Co., Ltd. – they are the professional hydraulic pump and hydraulic unit supplier Taiwan. To get more details of hydraulic pumps, please do not hesitate to contact with YEOSHE.

 

Article Source: https://www.rg-group.com/blogs/which-pump-will-work-with-your-portable-hydraulic-system/

Burger Box Forming Machine: Win Shine Machinery Can Provide Various Paper Box Making Machines

When you go McDonald’s or Burger King, maybe you think of a question about why is it that some burgers are wrapped in paper while some are put in boxes?

 

That’s a great question!

 

A low cost burger, like a plain hamburger at McDonald’s or Burger King, is paper wrapped to keep the costs down. People don’t have high expectations of a one dollar burger, so it’s no big deal. They don’t have many components either, so there is little to upset if they get jostled around in the bag during travel.

 

A higher end burger, like a Big Mac, is boxed to prevent the burger from becoming disheveled by the customer. A higher priced product means higher guest expectations. If A Big Mac was paper wrapped and it got smashed by other foods in the bag, fewer people would buy them. The higher price of the burger includes the packaging.

 

When mentioned paper burger boxes, do you know how do these paper boxes make?

 

The fastest way is manufactured by paper box forming machine. You can come and visit the website of Win Shine Machinery. On their site, you can find kinds of food box machines, and also can watch video for much more details.

 

Below, I will show you the video of Win Shine’s burger box forming machine:

 

Hamburger Box Forming Machine

WS-8804

If you have interest in burger box forming machine or other food box making machines, welcome to check out Win Shine’s website and feel free to contact them for more details of paper box forming machines!

 

Win Shine Machinery Co., Ltd.

No.208, Sec. 1, Guofeng Rd., Shengang Dist., Taichung City, 42942,Taiwan

TEL: +886-4-2515-4999

FAX: +886-4-2525-0111

E-mail: winshine.taiwan1990@gmail.com

 

Article Source: Quora

Which RFID Reader Option Is Best For You?

For those of you, who are new to the world of RFID and rugged handheld computing, welcome. We hope this post serves as a guide to help you better understands which information collection option best suits the needs of your project. A common question often answered here at Juniper is, “Which RFID frequency should I use?” We want to make sure you’re getting the tools you need, without overpaying for features that won’t be useful in your situation. Because identification readers are used in so many different cases, it’s hard to identify a customer’s exact needs without speaking to them directly. However, we hope these questions serve as a starting point to launch you in the right direction and prepare you to ask the right questions when determining the best option for your project.

 

Do You Need The Ability To Read And Write Data Over A Distance Greater Than ~50 Cm?

  • Yes → UHF might be a better option, allowing you to transfer data over several meters, while HF can only transfer data up to about 50 cm. If you need the ability to read over an even larger distance, UHF long-range RFID would be the best option for you.

 

  • No → HF might be better for you because its range is shorter, making it more reliable.

 

Will Your RFID Tags Be Placed Near Liquids, Metals, Carbon Substances, Or Other Dielectric And Conducting Objects?

  • Yes → HF would most likely work better because it is less vulnerable to interferences from surroundings. However, there are some manufacturers that have designed UHF tags that will work in these environments as well.

 

  • No → HF and UHF would both work well.

 

Do You Need To Read More Than 20 RFID Tags At One Time?

  • Yes → UHF might be better for you since it can read up to 200 tags at a time, whereas HF can only read up to 20 tags at a time.

 

  • No → Both HF and UHF would work. However, if you are planning to narrow down on one tag at a time, HF would probably be better since UHF might pick up multiple readings.

 

Will Your Tags Be Located In An Area With A High Amount Of Electromagnetic Interference (EMI)? EMI Is Emitted By Motors, Robots On Assembly Lines, Conveyors With Nylon Belts, Etc.

  • Yes → HF would probably be best because it is less susceptible to inaccuracies due to EMI.

 

  • No → HF and UHF would both work.

 

Does Your Application Require Faster Data Transfer?

  • Yes → UHF would probably be better because it transfers data faster than HF.

 

  • No → HF and UHF would both work.

 

Are There Inhibiting UHF Restrictions In Your Geographic Location That Would Interfere With Your Use Of UHF RFID?

  • Yes → HF might be better because the same HF technology is accepted worldwide, whereas UHF restrictions vary according to region.

 

  • No → HF and UHF would both be fine.

 

We hope answering these questions provides you with the information necessary to feel a little more confident about frequency options. If you need more information of UHF reader, welcome to check out the website of Pongee Industries Co., Ltd. – they are the professional manufacturer of RFID readers. Learn more details, please do not hesitate to contact with Pongee!

 

Article Source: http://blog.junipersys.com/which-rfid-reader-option-is-best-for-you/